Die Transformation der Arbeits- und Berufswelt

Nationale und internationale Perspektiven auf (Mega-)Trends am Beginn des 21. Jahrhunderts

Herausgegeben vom Arbeitsmarktservice Österreich
Regina Haberfellner, René Sturm

Die Transformation der Arbeits- und Berufswelt

Nationale und internationale Perspektiven auf (Mega-)Trends am Beginn des 21. Jahrhunderts

Herausgegeben vom
Arbeitsmarktservice Österreich
Inhalt

1 Zusammenfassung ... 5

2 Rahmen der Studie und Vorgehensweise 8

3 Prognostik, Trends und Foresight ... 10
 3.1 Megatrends .. 14
 3.2 Disruptive Innovationen .. 16
 3.3 Treiber auf europäischer Ebene: Ziele und Benchmarks im Rahmen der EU-2020-Ziele und der LLL:2020-Strategie 17

4 Beschäftigungsentwicklung und Höherqualifizierung auf dem Weg in die Wissensgesellschaft .. 21
 4.1 Von der Dienstleistungs- in die Wissensgesellschaft 24
 4.2 Höherqualifizierung und Akademisierung 26
 4.3 Qualifikation und Beschäftigung: Vorschau 30
 4.4 Fazit ... 37

5 Die alternde Gesellschaft ... 39
 5.1 Erwartete Auswirkungen auf Entwicklung und Struktur der Erwerbsbevölkerung . 44
 5.2 Die alternde Erwerbsbevölkerung 49
 5.3 Jobmöglichkeiten durch Ersatznachfrage 52
 5.4 Veränderte Bedarfe .. 52
 5.5 Fazit ... 55

6 Digitalisierung der Arbeitswelt ... 57
 6.1 Wegbereiter der vernetzten Gesellschaft: Digitalisierung, Mobiles Internet und Cloud Computing ... 57
 6.2 Von der App-Economy zur »Industrie 4.0« 61
 6.2.1 Die App-Economy .. 61
 6.2.2 Das »Internet der Dinge« 63
 6.2.3 »Industrie 4.0«: Internet trifft auf Industrie 65
 6.3 IKT als Beschäftigungshoffnung 66
 6.3.1 IKT-Beschäftigungstrends in Österreich 68
 6.3.1.1 Beschäftigung im IKT-Sektor 68
 6.3.1.2 Erwerbstätige in IKT-Berufen 70
 6.4 Crowdsourcing: Neue Formen atypischer Beschäftigung im digitalen Zeitalter ... 73
 6.5 Teilen statt Besitzen – die Share Economy 77
6.6 Neue Automatisierungsmöglichkeiten .. 78
6.7 Digitalisierung: Massenweise Jobvernichtung oder neue Beschäftigungs-impulse? ... 79
6.8 Fazit .. 83

7 Auf dem Weg in die Green Economy? .. 85
7.1 Megatrend: Klimawandel ... 85
7.2 Megatrend: Ressourcenknappheit – Ressourceneffizienz 87
7.3 Megatrend: Urbanisierung ... 89
7.4 Green Economy – das Konzept ... 90
7.5 Den Fortschritt messen ... 92
7.6 Die Green Economy als Jobmotor? ... 93
7.7 Green Economy – die europäische Perspektive 95
7.8 Umweltbeschäftigte in Österreich – jüngste Entwicklungen 100
7.9 Beschäftigungsperspektiven in der Umweltwirtschaft 104
7.10 Green Skills – New Skills? ... 105
7.11 Fazit .. 109

8 Feminisierung – der »Female Shift« als Trendwende? 111
8.1 Einleitung .. 111
8.2 Steigende Erwerbsbeteiligung .. 112
8.3 Atypische Beschäftigung und die Vereinbarkeit von Beruf und Familie 114
8.4 Gender Pay Gap ... 116
8.5 Berufliche und sektorale Segregation .. 117
8.6 Bildungsbeteiligung der Frauen .. 119
8.7 Soft Skills als weibliche Domäne .. 122
8.8 Fazit .. 123

9 Literatur .. 124

Abbildungsverzeichnis .. 137
Tabellenverzeichnis .. 139
1 Zusammenfassung

Steigende Arbeitslosenzahlen, ein tiefgreifender struktureller Wandel und eine zähe Wirtschaftsentwicklung infolge der globalen Finanz- und Wirtschaftskrise werfen (besorgte) Fragen dahingehend auf, in welche Richtung sich in den nächsten Jahren Wirtschaft und Beschäftigung fortentwickeln werden und welche Trends sich abzeichnen. Welche Entwicklungsperspektiven gibt es für die Beschäftigung und damit auch hinsichtlich zukünftiger Tätigkeitsprofile und Qualifikationsanforderungen?

Zusammenfassung

Mit der fortschreitenden Digitalisierung der Arbeitswelt sind mannigfaltige Befürchtungen über die Gefahr einer Beschäftigungserosion verbunden. Durch den technischen Fortschritt entstehen neue Möglichkeiten, Arbeitsprozesse zu automatisieren oder über Crowdsourcing-Prozesse temporär und flexibel auf externes Know-how bzw. externe Arbeitskraft zuzugreifen. Daneben verändern neue Geschäftsmodelle Branchenstrukturen und wirken damit auf Beschäftigungsstrukturen und Qualifikationsbedarfe ein. Wie tiefgehend die durch die Digitalisierung der Wirtschaft und der Arbeitswelt verursachten strukturellen Verschiebungen sein werden und wie diese zu bewerten sind, darüber gibt es durchaus unterschiedliche oder gar

2 Rahmen der Studie und Vorgehensweise

»To trend«: sich neigen, sich erstrecken, in einer bestimmten Richtung verlaufen – so vermittelt uns der Duden die Herkunft des Wortes »Trend«. Steigende Arbeitslosenzahlen, tiefgreifender struktureller Wandel und eine zähe Wirtschaftsentwicklung infolge der globalen Finanz- und Wirtschaftskrise werfen (besorgte) Fragen dahingehend auf, in welche Richtung sich in den nächsten Jahren Wirtschaft und Beschäftigung hin entwickeln werden und welche Trends sich abzeichnen. Welche Entwicklungsperspektiven gibt es für die Beschäftigung und damit auch hinsichtlich zukünftiger Tätigkeitsprofile und Qualifikationsanforderungen?

Für diesen Bericht wurde auf eine Vielzahl von Recherchequellen zurückgegriffen:¹

• Studien von etablierten Forschungseinrichtungen und namhaften WissenschaftlerInnen;
• Studien der Europäischen Kommission, von CEDEFOP sowie von internationalen Organisationen, wie z.B. der OECD, der UNO und der ILO;
• Positionspapiere von Interessenvertretungen und verschiedenen NGOs;
• Trendreports von Think Tanks und Beratungsunternehmen, wobei insbesondere letztere allerdings ihre Datenbasis und Methoden in aller Regel nicht offenlegen;
• Datenbankabfragen nationaler und europäischer Datenbanken;
• Medienberichte, einschlägige Online-Journale und Blogs.

¹ Sämtliche in diesem Bericht angeführten Links wurden zuletzt im Jänner 2016 auf ihre Gültigkeit hin überprüft.
3 Prognostik, Trends und Foresight

»Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen«, so lautet ein häufig zitiertes Bonmot.\(^4\) Die Listen an fundamentalen Irrtümern in der Einschätzung zukünftiger Entwicklungen, die im Internet kursieren, sind lang. Automobile wurden als vorübergehende Modeerscheinung abgetan, das Telefon sei nutzlos, und der PC werde sich nicht durchsetzen – dieser Aufzählung könnten noch zahllose Irrtümer hinzugefügt werden. Als Inbegriff einer Fehlprognose gilt heute die Prognose vom »Papierlosen Büro«.

\(^5\) Kreibich 2009, Seite 12.

Das Netzwerk »Wege ins Studium« (Deutschland) beschrieb im Jahr 2002 bereits die Schwierigkeiten zuverlässiger Prognosen hinsichtlich der zukünftigen Entwicklung der Arbeitsmärkte folgendermaßen:
7 Vorhersagen werden durch unberechenbare Innovationszyklen und durch die Folgen der Globalisierung erschwert. Konjunkturelle Zyklen selbst werden immer schwieriger einzuschätzen und sie werden zusätzlich von zeitlich nicht berechenbaren Innovationsschüben überlagert.

• Prognosen über die Beschäftigungsaussichten sind aufgrund der vielfältigen Einflussfaktoren nur sehr eingeschränkt möglich. Insbesondere stehen quantitativer Bedarf und qualitative Anforderungen in Wechselwirkung zueinander und können nicht separat voneinander betrachtet werden. Das gilt umso mehr in einer Zeit der voranschreitenden Digitalisierung der Arbeitswelt.
8

8 Vgl. Davenport / Kirby 2015.
Den Medien, also den Massenmedien wie den »neuen« Sozialen Medien, kommt dabei in der heutigen Zeit eine beachtliche Rolle zu, wie das Hype-Cycle-Modell des Beratungsunternehmens Gartner, das insbesondere im Bereich technologischer Innovationen zum Einsatz kommt, verdeutlicht. Demnach stoßen Medien aufgrund eines technischen Auslösers oder Durchbruchs mit einer Reihe von Berichten einen Hype an, der zu übertriebenem Enthusiasmus und überzogenen Erwartungen führt, obwohl die Anwendungen noch in den Kinderschuhen stecken und die Erwartungen kurzfristig nicht erfüllt werden können. In weiterer Folge macht sich Ernüchterung breit, und der positive Hype schlägt in einen negativen um. So erweist sich häufig erst in einem Zeitrahmen von zehn Jahren, ob sich eine technologische Innovation tatsächlich durchsetzen kann.11 Das Netzwerk »Wege ins Studium« bemängelte beispielsweise bereits vor mehr als zehn Jahren, dass in den Medien optimistische Fachkräftebedarfsschätzungen großer Beratungsunternehmen, deren Daten- und Methodengrundlagen zumeist nicht offengelegt werden, deutlich stärkere Beachtung finden als differenzierte Analysen sozial- und wirtschaftswissenschaftlicher Einrichtungen.12

11 Vgl. näher zum Hype-Cycle-Modell auch Haberfellner 2015, Seite 19ff.

<table>
<thead>
<tr>
<th>Tabelle 1: Trend-Phänomene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tür</td>
</tr>
<tr>
<td>Signal</td>
</tr>
<tr>
<td>Trend</td>
</tr>
<tr>
<td>Emerging Trend</td>
</tr>
<tr>
<td>Mikrotrend</td>
</tr>
<tr>
<td>Megatrend</td>
</tr>
<tr>
<td>Metatrend</td>
</tr>
<tr>
<td>Pseudotrend</td>
</tr>
<tr>
<td>Trendbruch</td>
</tr>
</tbody>
</table>

3.1 Megatrends

- Der Trend kann zwar regional unterschiedlich stark oder auf unterschiedliche Art wirksam werden, grundsätzlich bewirken Megatrends Veränderungen auf globaler Ebene.
- Der Trend ist stabil, er muss zumindest 20 Jahre lang wirksam sein.
- Ein Megatrend wirkt nicht punktuell, sondern auf alle Lebensbereiche ein.
- Megatrends sind robust: Sie können unterbrochen oder in ihrer Dynamik gebremst werden, setzen sich jedoch trotzdem fort.

Beispielhaft einige rezente Publikationen aus unterschiedlichen Kontexten ohne Anspruch auf Vollständigkeit. Diese Auflistung soll deutlich machen, dass Trendforschung sehr unterschiedliche Ausgangs- und Orientierungspunkte haben kann und in sehr unterschiedlichen Verwertungszusammenhängen erfolgt.

Eine Studie im Auftrag des German Convention Bureau, einem Verein, der Deutschland als Standort für Kongresse und ähnliche Veranstaltungen vermarktet, formuliert Zukunftsper- spektiven vor dem Hintergrund der Megatrends folgendermaßen:
- Globalisierung und Internationalisierung;
- »Peak Everything« – Ressourcenknappheit;
- Urbanisierung;
- demographischer Wandel, Feminisierung und Diversity;
- Technologisierung von Lebens- und Arbeitswelt;
- Nachhaltigkeit;
- Neue Mobilität;
- Sicherheit.

Kreibich (2009) listet folgende Megatrends auf:

- wissenschaftliche und technologische Innovationen;
- Belastungen von Umwelt und Biosphäre / Raubbau an den Naturressourcen;
- Bevölkerungsentwicklung und demographischer Wandel;
- Wandel der Industriegesellschaft zur Dienstleistungs- und Informations- bzw. Wissens-gesellschaft (Tertiärisierung und Quartarisierung der Wirtschaftsstrukturen);
- Globalisierung von Wirtschaft, Beschäftigung, Finanzsystem und Mobilität;
- technologische, ökonomische und soziale Disparitäten zwischen Erster und Dritter Welt sowie Extremismus und Terrorismus;
- Individualisierung der Lebens- und Arbeitswelt;
- Erhöhung der Mobilität bzw. der Personen- und Güterströme weltweit;
- Verringerung der Lebensqualität (nach UN- und Weltbank-Indizes);
- Spaltung der Gesellschaften durch ungleiche Bildung, Qualifikation und Massenarbeitslosigkeit.

Eine Studie zur Zukunft der Arbeitswelt im Auftrag der Robert Bosch Stiftung stellt die Megatrends folgendermaßen dar:

Abbildung 2: Megatrends

<table>
<thead>
<tr>
<th>Technisch-ökonomische Entwicklungen</th>
<th>Demographische Entwicklung</th>
<th>Gesellschaftliche Entwicklungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globalisierung</td>
<td>Alterung der Gesellschaft und der Belegschaften</td>
<td>Sensibilisierung für Nachhaltigkeit</td>
</tr>
<tr>
<td>Integration der Informations- und Kommunikationstechnologie</td>
<td>Schrumpfung der Bevölkerung</td>
<td>Feminisierung</td>
</tr>
<tr>
<td>Entwicklung zur Wissens- und Innovationsgesellschaft</td>
<td>Verknappung der Nachwuchskräfte</td>
<td>Individualisierung</td>
</tr>
<tr>
<td>Verknappung der Rohstoffsituation und Energieversorgung</td>
<td>Verlängerung der Lebensarbeitszeit</td>
<td>Wertewandel</td>
</tr>
</tbody>
</table>

Quelle: Walter/Fischer et al. 2013, Seite 26

Dieses Beispiel verweist auch darauf, dass sich Megatrends regional bzw. lokal nicht hundertprozentig widerspiegeln müssen, denn während sich Deutschland mit einer schrumpfenden Bevölkerung konfrontiert sieht, geht auf globaler Ebene (und auch in Österreich) nach wie vor der vorherrschende Trend in Richtung einer wachsenden Bevölkerung. Megatrends sind Cluster von Trendentwicklungen, große Veränderungen mit vielen kleinen und manchmal auch widersprüchlichen Aspekten. Bei Megatrends geht es daher nicht nur um Fakten und Zahlen, sondern um das Erkennen des »(…) systemischen Spiels des Wandels und dessen Vernetzung«.19

19 Gatterer 2012, Seite 27.
3.2 Disruptive Innovationen

Technologieschübe stellen in der Vorschau einen großen Unsicherheitsfaktor dar, insbesondere gilt das für so genannte »Disruptive Innovationen«. Darunter werden Innovationen oder Technologien verstanden, die das Potenzial haben, Marktstrukturen nachhaltig zu verändern, ein bestehendes Produkt oder eine bestehende Dienstleistung vollständig vom Markt zu verdrängen oder neue Märkte zu schaffen. In diesem Sinne schließt das Konzept an Schumpeters Konzept der »Schöpferischen Zerstörung« an.

Anhand der Fotografie lässt sich die Kraft disruptiver Innovationen verdeutlichen. Mehr als ein Jahrhundert lang wurden Fotos basierend auf chemischen Verfahren entwickelt. In weniger als 20 Jahren wurde diese Technologie durch die Digitalfotografie abgelöst, was u.a. dazu führte, dass etablierte Großunternehmen ihre Geschäftsgrundlage verloren. Eines der prominentesten Opfer dieser Entwicklung war wohl der ehemalige Branchenriese »Kodak«, der den Übergang zur digitalen Fotografie versäumte und nach einer 130-jährigen Firmengeschichte schließlich Insolvenz anmelden musste. Als weitere Beispiele für disruptive Innovationen können angeführt werden: Der Pferdewagen wurde durch die Eisenbahn und das Auto abgelöst, das Festnetztelefon in großem Ausmaß durch das Mobiltelefon, die auf Papier gedruckte Enzyklopädie durch Wikipedia, die Musik-CD in großem Ausmaß durch MP3 und der Offsetdruck durch den Digitaldruck.

20 Der Begriff »Disruptive Innovationen« wurde von Clayton Christensen eingeführt, der an der Harvard Business School lehrt.
Unglück. Dieses Ereignis gilt als Sternstunde für Twitter und als Startschuss für einen Bürgerjournalismus neuer Qualität.24

Ein Charakteristikum von disruptiven Innovationen ist, dass sie letztlich nur ex post als solche identifiziert werden können. Sie entziehen sich traditionellen Analyse- und Planungsstrategien, in der Welt disruptiver Innovationen versagen daher Marktforschung und traditionelle Planung.25 Märkte, die (noch) nicht existieren, können nicht analysiert werden. Die Wahrscheinlichkeit, dass sie sich durchsetzen werden, ist in hohem Maße ungewiss, denn disruptive Innovationen benötigen nicht nur technologische Innovationen als Katalysatoren, sondern in weiterer Folge auch infrastrukturelle Rahmenbedingungen für ihren nachhaltigen Durchbruch.26

3.3 Treiber auf europäischer Ebene: Ziele und Benchmarks im Rahmen der EU-2020-Ziele und der LLL:2020-Strategie

Vorkrisenjahre noch immer nicht erreicht werden konnte, wirft dieser Bericht einen Blick auf aktuelle Entwicklungen und Trends.28

Einen wichtigen Rahmen bilden die im Jahr 2010 beschlossenen EU-2020-Ziele sowie die Strategie für das Lebensbegleitende Lernen (LLL:2020). Die allgemeinen Ziele der EU-2020-Strategie für den gesamten EU-Bereich wurden durch nationale Ziele ergänzt bzw. adaptiert.29 Bezogen auf Beschäftigung und Bildung sind hier von Bedeutung:

- Der Anteil der frühzeitigen Schul- und AusbildungsabgängerInnen soll unter zehn Prozent liegen (Österreich: 9,5 Prozent).

In den Krisenjahren wies Österreich im Vergleich zur gesamten EU bei einer ganzen Reihe von Indikatoren deutlich günstigere Werte aus. Das gilt u.a. für die Arbeitslosenrate junger

28 Vgl. CEDEFOP 2013, CEDEFOP 2011.
Erwachsener, für die Quote an frühzeitigen SchulabbrecherInnen, für die Beschäftigungsquote und für den Anteil an Geringqualifizierten. Das an sich positive Bild trübe im Wesentlichen nur der geringe Anteil der Personen mit einem tertiären Bildungsabschluss unter den 30- bis 34-Jährigen.\(^3\)\(^1\) Für 2014 wurde schließlich mit einem Anteil von 40,0 Prozent die Zielerreichung bei den tertiären Bildungsabschlüssen an Eurostat gemeldet, allerdings ist dieser Erfolg der Umstellung auf die ISCED 2011-Systematik geschuldet, die nun Abschlüsse an Berufsbildenden Höheren Schulen dem ISCED Level 5 zuordnet.\(^3\)\(^2\) Im Gegensatz zum gesamteuropäischen Trend meldete Österreich für das Jahr 2014 erstmals seit 2008 einen Rückgang bei der Beschäftigungquote der 20- bis 64-Jährigen, sie fiel von 74,6 auf 74,2 Prozent.

Insamt umfassen die strategischen Ziele und Benchmarks der Strategie für das Lebensbegleitende Lernen (LLL:2020) folgende Punkte:\(^3\)\(^4\)

- Steigerung des Anteiles an Lehrlingen und LehrabsolventInnen, die die Berufssiebprüfung ablegen, von rund zwei Prozent im Jahr 2008 auf zehn Prozent im Jahr 2020.
- Senkung des Anteiles der 15- bis 24-Jährigen, die sich weder in Beschäftigung noch in Ausbildung befinden, von 7,8 Prozent im Jahr 2009 auf 6,4 Prozent bis 2020.

\(^3\)\(^1\) Vgl. CEDEFOP 2014, Seite 76.
\(^3\)\(^2\) Der ISCED Level 5 gilt als nicht-universitärer Tertiärbereich und wurde mit der Umstellung auf ISCED 2011 aufgewertet. Siehe dazu Schmid 2014.
\(^3\)\(^4\) Vgl. Republik Österreich 2011, Seite 4.

37 Vgl. Statistik Austria 2013.
4 Beschäftigungsentwicklung und Höherqualifizierung auf dem Weg in die Wissensgesellschaft

Dabei zeigte die Entwicklung der letzten Jahre – und verweisen auch die Prognosen für die nächsten zehn Jahre – auf große Unterschiede zwischen den EU-Mitgliedsländern. In einigen EU-Staaten wird bis 2025 sogar mit einem Beschäftigungsrückgang gerechnet, wobei bei
Ländern wie Estland, Deutschland und Lettland dafür weniger ein schwaches Wirtschaftswachstum als vielmehr ein erwarteter Mangel an Arbeitskräften ausschlaggebend ist. Österreich liegt mit einem prognostizierten Wachstum von drei Prozent im unteren Mittelfeld (siehe Abbildung 4). Während nicht nur in Österreich, sondern auch in Belgien, Deutschland, Frankreich, Finnland, Schweden und Großbritannien die Beschäftigungsquote bereits höher als beim Einsetzen der Krise 2008 ist, werden Italien, die Niederlande und die Slowakei voraussichtlich erst 2020 das Vorkrisenniveau erreichen. Insbesondere ost- und südeuropäische Länder werden demnach zumindest weitere zehn Jahre benötigen, um die Rückschläge durch die Wirtschaftskrise aufholen zu können. Für die Tschechische Republik, Ungarn, Rumänien, Slowenien, Spanien, Portugal und Griechenland wird nicht vor 2025 mit der Rückkehr zum Vorkrisenniveau gerechnet. CEDEFOP spricht daher auch von einer uneinheitlichen Rückkehr zum Beschäftigungswachstum.\(^{38}\)

Im August 2015 waren 23 Millionen EuropäerInnen ohne Arbeit, rund die Hälfte der Arbeitslosen war bereits mehr als ein Jahr ohne Beschäftigung. Damit hat sich die Langzeitarbeitslosigkeit in der EU seit 2008 fast verdoppelt.\(^{39}\) Steigende Arbeitslosigkeit infolge der Finanz- und Wirtschaftskrise ist nicht nur ein europäisches Phänomen. OECD-weit ist die Arbeitslosigkeit

\(^{38}\) Vgl. CEDEFOP 2015a.

noch immer höher als vor der Wirtschaftskrise.40 Nach Schätzungen der ILO waren 2014 weltweit 201 Millionen Menschen arbeitslos – um 30 Millionen mehr als vor Ausbruch der globalen Krise 2008, und eine Entschärfung der Lage wird nicht erwartet, denn 2019 werden weltweit voraussichtlich 212 Millionen Menschen ohne Arbeit sein.41 Für Österreich wird nach jüngsten Prognosen mit einer anhaltend hohen Arbeitslosigkeit gerechnet, die bis 2018 noch etwas steigen soll. Das moderate Beschäftigungswachstum von einem Prozent jährlich wird nicht ausreichen, um das steigende Arbeitskräfteangebot in den Arbeitsmarkt zu integrieren. Die Arbeitslosenquote wird demnach von aktuell 5,8 Prozent bis 2018 auf 6,1 Prozent steigen und erst 2020 wieder auf das Niveau von 2015 sinken.42

Arbeitsmarktpolitisch steht die Arbeitslosigkeit im Zentrum der Aufmerksamkeit. Weniger offensichtlich sind tiefgreifende Änderungen in den Arbeitsverhältnissen, also Änderungen für jene Menschen, die in Beschäftigung sind. Der Trend geht weg von ArbeitnehmerInnen in stabilen Vollzeit-Beschäftigungsverhältnissen, und das gilt insbesondere für entwickelte Volkswirtschaften. Von den unselbständig Beschäftigten gehen weniger als 40 Prozent einer unbefristeten Vollzeitbeschäftigung nach, und ihr Anteil ist weiter rückläufig.43 Das heißt, dass sechs von zehn unselbständig Beschäftigten teilzeitbeschäftigt sind und/oder in einem befristeten Beschäftigungsverhältnis stehen.

40 Vgl. OECD 2015.
41 Vgl. ILO 2015.
42 Vgl. Baumgartner et al. 2015. Die Arbeitslosenquote in Prozent der Erwerbspersonen (Eurostat-Definition).
43 Vgl. ILO 2015, Seiten 113–117, oder dazu auch OECD 2015.

4.1 Von der Dienstleistungs- in die Wissensgesellschaft

Beschäftigungsentwicklung und Höherqualifizierung auf dem Weg in die Wissensgesellschaft

Nicht nur der Dienstleistungssektor selbst ist gewachsen, auch in der Sachgüterproduktion haben sich Produktionstechnologien, Organisationsstrukturen und damit auch Tätigkeitsanforderungen verändert. Im europäischen Vergleich verharrte Österreichs Sachgüterproduktion hinsichtlich der Qualifikationsanforderungen lange Zeit auf unterdurchschnittlichem Niveau. Mit der Entwicklung weg von Industrien mit niedrigen Qualifikationsanforderungen (z. B. Textil- und Bekleidungsindustrie) und hin zu Industrien mit hohen Qualifikationsanforderungen (z. B. Pharmaindustrie, Maschinenbau) entspricht Österreichs Spezialisierung in Industrien mit höheren Qualifikationsanforderungen inzwischen dem europäischen Durchschnittsniveau.44

Im Gegensatz zur Industriegesellschaft sind es in der Wissensgesellschaft bzw. Wissensökonomie weniger industrielle Maschinenparks oder Fabrikanlagen, die Werte generieren, sondern vielmehr Marken, Patente, Lizenzen und Rechte. Im globalen Wettbewerb konnte sich bislang die industrialisierte Welt in forschungs- und technologieintensiven Branchen, wie z. B. in der Medizintechnik, in der IKT und in der Pharmabranche, behaupten und ihren Vorsprung halten. Diese Branchen sind es auch, die ihren Anteil an den Gewinnen erheblich ausweiten konnten: Im Jahr 1999 konnten in der westlichen Welt wissensintensive Branchen rund 17 Prozent der Gewinne auf sich vereinigen, aktuell sind es bereits 31 Prozent.45 Wissen, das uns ermöglicht, komplexe Tätigkeiten auszuführen, Innovationen hervorzubringen oder nutzbringend zu adaptieren, ist für hochentwickelte Volkswirtschaften damit zur wichtigsten Determinante für Wirtschaftswachstum und internationale Wettbewerbsfähigkeit geworden.46

Während die Industriegesellschaft durch das Primat des Erfahrungswissens, durch die Dominanz des industriellen Sektors, durch manuelle Tätigkeiten und durch die Auseinandersetzung zwischen Kapital und Arbeit gekennzeichnet ist, ist die wirtschaftliche Leistungsfähigkeit der Wissensgesellschaft nicht länger allein von den verfügbaren Arbeits- und Kapitalvolumen abhängig. Im Jahr 2013 wurde die Hälfte der insgesamt rund 48.000 Neugründungen in Österreich als wissens- und forschungsintensive Unternehmen gegründet, davon wurden wiederum rund 88 Prozent als Ein-Personen-Unternehmen gegründet, also ohne unselbständig Beschäftigte.47 Die Organisation sozialer Beziehungen und die Fähigkeit zur systematischen Erzeugung, zur flexiblen Rekombination und produktiven Nutzung von Wissen treten in den Vordergrund.

Im Zentrum der Wissensgesellschaft stehen nicht nur die gezielte Umsetzung von Erfahrungen und neuen Erkenntnissen in neue Produkte und Dienstleistungen, sondern auch die ständige Infragestellung tradieter Wahrnehmungs- und Handlungsmuster. In diesem Sinne ist die Wissensgesellschaft auch eine »unruhige Gesellschaft«, denn Wissen verändert und

entwickelt sich ständig weiter. Das Konzept der Wissensgesellschaft geht jedoch über die Integration von Wissensarbeit in den Wertschöpfungsprozess weit hinaus. In der Wissenschöpfungsprozess weithinaus. In der Wissensgesellschaft sind Menschen auch außerhalb ihres Berufslebens zu einem großen Teil der Zeit mit der Verarbeitung von Informationen beschäftigt.48

4.2 Höherqualifizierung und Akademisierung

48 Vgl. dazu ausführlich Haberfellner/Sturm 2014.
49 Vgl. Statistik Austria 2015c, Seite 39.
50 Vgl. Statistik Austria, Mikrozensus.
Frauen bei den höheren Bildungsabschlüssen. Der mit Abstand wichtigste Bildungsabschluss der Männer war eine Lehre, für 50 Prozent der jungen Männer stellte der Lehrabschluss den höchsten Bildungsabschluss dar (siehe Abbildung 7).

In den letzten 30 Jahren hat sich das Bild erheblich gewandelt. 19 Prozent der Männer in der Altersgruppe der 25- bis 34-Jährigen verfügen aktuell über einen Hochschulabschluss, weitere 22 Prozent haben eine AHS oder BHS abgeschlossen. Der Anteil der Personen mit Pflichtschulabschluss als höchstem Bildungsabschluss ist bei den Männern auf neun Prozent gesunken.

Eine noch dynamischere Entwicklung nahm die Bildungsbeteiligung der Frauen. Zwar verfügt mit elf Prozent noch immer ein größerer Anteil unter den Frauen als unter den Männern über einen Pflichtschulabschluss, allerdings haben die Frauen bei den höheren Bildungsabschlüssen die Führungsrolle übernommen. Aktuell haben 26 Prozent der 25- bis 34-jährigen Frauen eine Hochschulausbildung abgeschlossen, und weitere 24 Prozent haben als höchsten Bildungsabschluss einen Maturaabschluss (siehe Abbildung 8).
Die Hochschulprognose von Statistik Austria rechnet bis 2025 mit einer leicht rückläufigen Zahl an StudienanfängerInnen.51 Der Anstieg von rund 59.000 StudienanfängerInnen im Studienjahr 2008/2009 auf etwa 66.000 im Studienjahr 2012/2013 war überwiegend auf einen stärkeren Zustrom an ausländischen StudienanfängerInnen zurückzuführen. Der Prognose liegt die Annahme zugrunde, dass sich dieser Trend nicht fortsetzen wird und in den Studienjahren bis 2031/2032 die Zahl der StudienanfängerInnen jährlich zwischen 65.000 und 67.000 liegen wird, sich also auf hohem Niveau stabilisiert. Diese konstante Entwicklung ist wesentlich darauf zurückzuführen, dass sich durch die geburtenschwachen Jahrgänge ab Mitte der 1990er-Jahre auch die Zahl der MaturantInnen trotz ihres steigenden Anteiles zahlenmäßig kaum verändert.

51 Vgl. Statistik Austria 2014. Der Prognose liegen die vereinfachenden Annahmen zugrunde, dass das geschlechts- und vorbildungspezifische Studienverhalten der letzten Jahre sowie die universitären Rahmenbedingungen im Prognosezeitraum unverändert bleiben.
heutiger Sicht noch offen ist, ob die Arbeitsmärkte dieser Länder die stark wachsende Zahl an Personen mit hohen Bildungsabschlüssen zur Gänze aufnehmen werden können.\footnote{Vgl. OECD 2015a.}

Neben den Zielvorgaben der verschiedenen Länder, so wie beispielsweise die Europa 2020-Strategie der Europäischen Kommission, gelten drei Trends bzw. strukturelle Entwicklungen als wesentliche Treiber in Richtung einer zunehmenden Akademisierung:

- Die fortschreitende Rationalisierung der Dienstleistungen führt zu einem steigenden Bedarf an hochqualifizierten Personen, die Planungs- und Steuerungsaufgaben übernehmen, während der Bedarf an Beschäftigten mit mittleren Qualifikationsniveaus, die überwiegend standardisierbare Tätigkeiten ausführen, sinkt.

Während in der Europäischen Union also rund die Hälfte der Beschäftigten erheblichen Wandel in den Job-Anforderungen erlebt, ist ein nicht unwesentlicher Anteil in Jobs beschäftigt, die geringe Qualifikationsanforderungen stellen und/oder keine Entwicklungsmöglichkeiten bieten.

4.3 Qualifikation und Beschäftigung: Vorschau

55 Vgl. CEDEFOP 2015b.

Bis 2020 werden in der EU rund 46 Prozent der 30- bis 34-Jährigen hochqualifiziert sein, womit die Vorgabe von 40 Prozent bis 2020 übertroffen werden wird. Allerdings haben 2013 noch immer 11,9 Prozent der jungen Menschen das Bildungs- und Berufsbildungssystem mit niedrigen Qualifikationen verlassen, wobei das Ziel ist, den Anteil dieser Gruppe bis 2020 auf unter zehn Prozent zu senken.56

Für Österreich prognostiziert CEDEFOP für 2025 den Anteil der Hochqualifizierten am Arbeitskräfteangebot mit 25,9 Prozent, 2013 lag ihr Anteil bei 22,9 Prozent und 2005 bei 20 Prozent. Der Anteil der Personen mit niedrigen Qualifikationen wird voraussichtlich bis 2025 auf 14,5 Prozent weiter zurückgehen, während der Anteil der Personen mit mittleren Qualifikationen mit rund 60 Prozent gegenüber 2013 stabil bleiben dürfte.57

Technologischer Wandel gilt als wesentlicher Treiber für steigende Qualifikationsanforderungen. Entsprechend positiv fallen auch die Beschäftigungsprognosen für MINT-Berufe (englisch: STEM) aus, denn während in der EU-28 für die Jahre 2015 bis 2025 über alle Berufe ein Beschäftigungswachstum von drei Prozent erwartet wird, sind die Aussichten für MINT-Berufe deutlich positiver, für sie wird mit einem Plus von 13 Prozent gerechnet.58

57 Vgl. CEDEFOP 2015.
Entsprechend dem Ansatz des »Skill-biased Technological Change« ist auch künftig damit zu rechnen, dass die anspruchsvolleren und komplexeren Tätigkeiten weiter zunehmen und die Anforderungen der Unternehmen an die Arbeitskräfte weiter steigen werden. Höhere Anforderungen können sich nicht nur in höheren formalen Ausbildungsabschlüssen und in einer höheren Weiterbildungsnötigkeit widerspiegeln, sondern auch in komplexeren bzw. multidimensionalen Tätigkeitsprofilen, in denen sich mehrere Aufgaben vereinen, wie sie beispielsweise in hybriden Qualifikationsbündeln zum Ausdruck kommen. Dazu zählt beispielsweise ein Mix an kaufmännischen, technischen, rechtlichen und / oder kommunikativen Qualifikationen.\(^{59}\)

Mehr als neun Millionen Arbeitsplätze mit niedrigen Qualifikationsanforderungen werden voraussichtlich verlorengehen, und selbst im mittleren Qualifikationssegment wird es EU-weit 2025 per Saldo weniger Arbeitsplätze geben. EU-weit wird damit gerechnet, dass rund 46 Prozent der Beschäftigungsmöglichkeiten bis 2025 ein hohes Qualifikationsniveau erfordern, rund 41 Prozent ein mittleres Qualifikationsniveau und knapp 13 Prozent im niedrigen Qualifikationssegment angesiedelt sein werden. Anerkennung dieser Prognose und der Tatsache, dass im Gefolge der Finanz- und Wirtschaftskrise allein in den Jahren 2008 bis 2011 die Arbeitslosenrate der Geringqualifizierten (ISCED 0–2) EU-weit um fünf Prozentpunkte auf 14,8 Prozent gestiegen ist,\(^{60}\) wird die Erwerbsintegration Geringqualifizierter eine der großen Herausforderungen der kommenden zehn Jahre darstellen.

<table>
<thead>
<tr>
<th>Qualifikationsniveau</th>
<th>Expansionsbedarf</th>
<th>Ersatzbedarf</th>
<th>Gesamt</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedriges Qualifikationsniveau</td>
<td>–9.345.860</td>
<td>22.789.680</td>
<td>13.443.820</td>
<td>12,5%</td>
</tr>
<tr>
<td>Mittleres Qualifikationsniveau</td>
<td>–798.110</td>
<td>45.258.440</td>
<td>44.460.320</td>
<td>41,2%</td>
</tr>
<tr>
<td>Hohes Qualifikationsniveau</td>
<td>19.897.770</td>
<td>29.982.520</td>
<td>49.880.290</td>
<td>46,3%</td>
</tr>
<tr>
<td>EU-28 gesamt</td>
<td>9.753.800</td>
<td>98.030.640</td>
<td>107.784.440</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Diese drei großen Entwicklungslinien auf europäischer Ebene, nämlich steigende Beschäftigungsmöglichkeiten für Hochqualifizierte, stagnierende Beschäftigungsmöglichkeiten für mittlere Qualifikationsniveaus und sinkende für Niedrigqualifizierte, variieren zum Teil erheblich von Mitgliedstaat zu Mitgliedstaat. Für Österreich wird – dem gesamteuropäischen Trend fol-

\(^{60}\) Vgl. CEDEFOP 2012a. Bei Hochqualifizierten lag die Arbeitslosenrate bei 5,0 Prozent, bei den Mittelqualifizierten bei 7,8 Prozent.
gend – für gut zwölf Prozent der Beschäftigungsmöglichkeiten ein geringes Qualifikationsniveau genügen. Im Gegensatz zum gesamteuropäischen Trend wird für Österreich jedoch auch im mittleren Qualifikationssegment mit einem positiven Expansionsbedarf gerechnet, und knapp 56 Prozent der Beschäftigungsmöglichkeiten sollen mittlere Qualifikationsanforderungen stellen. Der Anteil der Beschäftigungsmöglichkeiten mit hohen Qualifikationsanforderungen wird in Österreich mit knapp 32 Prozent niedriger ausfallen als im gesamteuropäischen Schnitt. Insgesamt werden rund 1,65 Millionen Jobmöglichkeiten in Österreich erwartet, davon werden knapp 1,49 Millionen auf den Ersatzbedarf entfallen. Mehr als 55.000 Arbeitsplätze mit geringen Qualifikationsanforderungen werden voraussichtlich nicht nachbesetzt, in diesem Qualifikationssegment eröffnen sich dadurch im Zeitraum 2013 bis 2025 per Saldo nur rund 205.000 Beschäftigungsmöglichkeiten, die ausschließlich auf Ersatzbedarf basieren. Im Segment der mittleren und insbesondere der hohen Qualifikationsanforderungen entstehen hingegen auch neue Beschäftigungsmöglichkeiten (siehe Abbildung 11).

geringeren Wachstum (jährlich 0,7 Prozent) gerechnet, und bei Arbeitskräften mit höchstens Pflichtschulabschluss wird ein jährliches Minus von 0,3 Prozent erwartet (siehe Tabelle 4).

Tabelle 4: Unselbständige Beschäftigung, nach dem Niveau der Ausbildungsanforderungen (Skill Levels), 2013 und 2020

<table>
<thead>
<tr>
<th>Beruf mit Leitungsfunktion und Berufe mit militärischem Charakter (Skill Level 0)*</th>
<th>2013</th>
<th>2020</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>162.900</td>
<td>182.900</td>
<td>19.900</td>
</tr>
<tr>
<td>Akademische Ausbildung (Skill Level 4)</td>
<td>502.300</td>
<td>595.000</td>
<td>92.700</td>
</tr>
<tr>
<td>Mittlere Qualifikation (Skill Levels 2+3)</td>
<td>2.429.500</td>
<td>2.546.200</td>
<td>116.700</td>
</tr>
<tr>
<td>Maximal Pflichtschule (Skill Level 1)</td>
<td>295.900</td>
<td>289.200</td>
<td>– 6.800</td>
</tr>
<tr>
<td>Gesamt</td>
<td>3.390.700</td>
<td>3.613.300</td>
<td>222.600</td>
</tr>
</tbody>
</table>

Zu berücksichtigen ist, dass die nationalen Prognosezahlen nur bedingt mit jenen der CEDEFOP-Prognosen vergleichbar sind. Dies betrifft u. a. die Bewertung von Daten zur Arbeitslosigkeit, zur Beschäftigung im Allgemeinen und jene nach Berufsgruppen im Besonderen. Die nationale Prognose erwartet einen deutlich höheren Anteil der »Professionals« am Beschäftigungswachstum als CEDEFOP, ebenso erwartet sie im Vergleich zu CEDEFOP einen deutlich geringeren Anteil der Geringqualifizierten. Während in der CEDEFOP-Berechnung nur ISCED 5 und ISCED 6 zu den hohen Qualifikationen gezählt werden, rechnet die nationale Berichterstattung Teile der Berufsbildenden Höheren Schulen (BHS) (ISCED 4a) in das hochqualifizierte Segment ein und kommt dementsprechend zu höheren Werten.61

Die Prognose für Österreich untermauert erstens den sich fortsetzenden Trend in Richtung der Dienstleistungsberufe und zweitens den Trend zu höher- und hochqualifizierten Tätigkeiten. Die drei wichtigsten Trends auf nationaler Ebene sind:62
- Der strukturelle Wandel geht zulasten von geringqualifizierten Berufen, die typischerweise in der Sachgüterproduktion, im Bergbau oder in der Landwirtschaft angesiedelt sind.
- Generell ist eine Tendenz hin zu Berufen mit höheren Qualifikationsvoraussetzungen zu beobachten. Dies gilt sowohl für Wirtschaftsbereiche, in denen Berufe mit hohen Skill Levels bereits stark vertreten sind, als auch für Branchen mit insgesamt eher geringen Qualifikationsanforderungen an Beschäftigte.

61 Vgl. CEDEFOP 2015.
Es zeichnet sich eine deutliche Verlagerung der Beschäftigung von niedrigqualifizierten zu mittleren und hochqualifizierten Tätigkeiten ab. Der Zuwachs an Beschäftigungsverhältnissen auf akademischem Niveau (Skill Level 4) wird mit 92,700 alleine 42 Prozent des Beschäftigungsplus ausmachen. Für die mittleren Skill Levels (2+3) wird in Summe ein Beschäftigungsplus von 116,700 erwartet, das bedeutet jedoch nur ein jährliches Wachstum von 0,7 Prozent, während die akademischen Berufe jährlich mit 2,4 Prozent wachsen werden. Für die mittleren Qualifikationsgruppen werden außerdem sehr uneinheitliche Entwicklungstrends erwartet. Während insbesondere im Dienstleistungsbereich die Zeichen auf Wachstum stehen, wird für die Berufshauptgruppe »Anlagen- und Maschinenbedienung sowie Montage«, die stark durch Beschäftigung in der von Rationalisierung und Automatisierung betroffenen Industrie gekennzeichnet ist, ein Beschäftigungsminus erwartet. Gleiches gilt für die Hilfskräfte, die insbesondere im Sachgüterbereich mit Beschäftigungseinbußen rechnen müssen (siehe Abbildung 12). Insgesamt wird auch innerhalb der sechs Berufshauptgruppen mit mittlerem Qualifikationsniveau eine Verlagerung der Beschäftigung hin zu den höheren dieser mittleren Qualifikationen erwartet.

Abbildung 12: Beschäftigte, nach Berufshauptgruppen, 2013 und 2020 (Prognose Österreich)\(^{63}\)

<table>
<thead>
<tr>
<th>Berufshauptgruppe</th>
<th>2013</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Führungskräfte</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Akademische Berufe</td>
<td>92,700</td>
<td>92,700</td>
</tr>
<tr>
<td>Technische Berufe</td>
<td>116,700</td>
<td>116,700</td>
</tr>
<tr>
<td>Nicht akademische Fachkräfte</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Bürokräfte und verwandte Berufe</td>
<td>400,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Dienstleistungsberufe</td>
<td>600,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Handwerks- und verwandte Berufe</td>
<td>700,000</td>
<td>700,000</td>
</tr>
<tr>
<td>Anlagen-, Maschinenbedienung und Montageberufe</td>
<td>800,000</td>
<td>800,000</td>
</tr>
<tr>
<td>Hilfsarbeitskräfte</td>
<td>900,000</td>
<td>900,000</td>
</tr>
</tbody>
</table>

Quelle: WIFO/AMS 2014; eigene Darstellung

Der weiter anhaltende Bedarf an mittleren Qualifikationen begründet sich auch auf Entwicklungen in Österreichs Sachgüterproduktion. Betrachtet man die Sachgüterproduktion und die Dienstleistungen gemeinsam, so ist Österreich inzwischen leicht überdurchschnittlich auf innovationsintensive Sektoren, wie z.B. Maschinenbau, Nachrichtentechnik und

\(^{63}\) Für die Prognose wurde ein adaptiertes Konzept der Berufshauptgruppen verwendet, vgl. dazu WIFO/AMS 2014, Seite 62ff.

4.4 Fazit

Hinsichtlich der Beschäftigung gehen derzeit sämtliche Prognosen in Richtung einer verhalten Entwicklung in den kommenden fünf bis zehn Jahren. Das gilt sowohl auf globaler, europäischer als auch auf nationaler Ebene. Weiterhin ist mit hohen Arbeitslosenzahlen zu rechnen, die auch durch das steigende Arbeitskräfteangebot genährt werden.

Dieses bloß moderate Beschäftigungswachstum bedeutet für die Qualifikationsstruktur der Beschäftigten bzw. Erwerbspersonen jedoch nicht ein "More of the Same«, denn im Fahrwasser des Strukturwandels in Richtung von Wissensgesellschaft, Wissensarbeit und

5 Die alternde Gesellschaft

Der wachsende Anteil der älteren Bevölkerungsgruppen an der Gesamtbevölkerung ist ein weltweites Phänomen, global ist die Bevölkerungsgruppe der Über-60-Jährigen die am stärksten wachsende. Die Vereinten Nationen gehen davon aus, dass diese Bevölkerungsgruppe bis 2050 in den entwickelten Ländern jährlich um ein Prozent wachsen wird, noch stärker jedoch mit jährlichen 2,9 Prozent in den weniger entwickelten Ländern. Im Jahr 2015 betrug die Gesamtbevölkerung 7,3 Milliarden Menschen, davon waren 12,3 Prozent 60 Jahre oder älter, und 1,7 Prozent waren 80 Jahre oder älter. Bis 2050 wird sich die Bevölkerungsgruppe 60+ von 901 Millionen (2015) auf 2,1 Milliarden mehr als verdoppeln, und die Bevölkerungsgruppe 80+ wird sich im gleichen Zeitraum von 125 Millionen auf 434 Millionen verdreifachen.\(^{68}\)

Dafür verantwortlich sind zwei Entwicklungen, nämlich einerseits die Alterung der Babyboomer-Generation aus den 1950er- und 1960er-Jahren und andererseits die steigende

Abbildung 13: Bevölkerungsentwicklung in Österreich, nach Altersgruppen, 1952–2060

70 Vgl. ILO 2013a, Seite 8.
71 Vgl. Statistik Austria, Demographische Indikatoren [Abfrage am 2.4.2015].
Die alternde Gesellschaft

Tabelle 5: Anteile der Altersgruppen an der Gesamtbevölkerung, 1990–2050

<table>
<thead>
<tr>
<th></th>
<th>Bis 14 Jahre</th>
<th>15–29 Jahre</th>
<th>30–44 Jahre</th>
<th>45–59 Jahre</th>
<th>60–74 Jahre</th>
<th>75+ Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>17,5%</td>
<td>23,9%</td>
<td>21,0%</td>
<td>17,5%</td>
<td>13,2%</td>
<td>6,9%</td>
</tr>
<tr>
<td>2000</td>
<td>17,0%</td>
<td>18,9%</td>
<td>24,8%</td>
<td>18,6%</td>
<td>13,5%</td>
<td>7,1%</td>
</tr>
<tr>
<td>2010</td>
<td>14,8%</td>
<td>18,8%</td>
<td>21,7%</td>
<td>21,5%</td>
<td>15,1%</td>
<td>8,0%</td>
</tr>
<tr>
<td>2020</td>
<td>14,3%</td>
<td>17,6%</td>
<td>20,0%</td>
<td>22,4%</td>
<td>16,1%</td>
<td>9,6%</td>
</tr>
<tr>
<td>2030</td>
<td>14,5%</td>
<td>16,1%</td>
<td>19,7%</td>
<td>19,3%</td>
<td>19,3%</td>
<td>11,2%</td>
</tr>
<tr>
<td>2040</td>
<td>13,9%</td>
<td>16,2%</td>
<td>18,0%</td>
<td>19,5%</td>
<td>17,9%</td>
<td>14,5%</td>
</tr>
<tr>
<td>2050</td>
<td>13,6%</td>
<td>16,0%</td>
<td>17,6%</td>
<td>18,6%</td>
<td>17,3%</td>
<td>16,8%</td>
</tr>
</tbody>
</table>

Quelle: STATcube – Statistische Datenbank von Statistik Austria, Bevölkerungsprognose 2015; eigene Berechnungen

Analog zum globalen Trend geht auch in Österreich die alternde Gesellschaft mit einer wachsenden Gesamtbevölkerung Hand in Hand. Laut der jüngsten Bevölkerungsprognose72 der Statistik Austria wird die Bevölkerung Österreichs sogar stärker wachsen als bislang erwartet. Im Jahresdurchschnitt 2015 lebten in Österreich 8,62 Millionen Menschen, 2022 dürfte Österreich bei anhaltender Entwicklung erstmals im Jahresdurchschnitt mehr als neun Millionen EinwohnerInnen zählen. Ein wesentlicher Treiber für das erwartete Bevölkerungswachstum ist nicht nur die Alterung der Gesellschaft, eine wichtige – und nur schwer zu prognostizierende Rolle – spielt die Zuwanderung73. In der berechneten Hauptvariante ohne Wanderung wird deutlich, dass Österreichs Bevölkerung ohne Wanderung schrumpfen würde, die Bevölkerungszahl würde in diesem Fall 2025 nicht bei 9,16 Millionen liegen, sondern bei 8,56 Millionen. Ohne Zuwanderung würde die Bevölkerung bis 2060 weiter auf 7,27 Millionen schrumpfen. In der Hauptvariante (unter Einberechnung der Migration) wird für 2060 mit 9,70 Millionen EinwohnerInnen gerechnet.

Nicht nur die Bevölkerungszahl, sondern auch die Altersstruktur der Bevölkerung unterscheidet sich in dem Szenario ohne Wanderung erheblich vom Hauptszenario. Der Anteil der älteren Bevölkerung würde noch stärker wachsen und jener der jüngeren Bevölkerung dementsprechend stärker zurückgehen. In dem Szenario ohne Wanderung würde der Anteil der Über-75-Jährigen im Jahr 2050 bei 21,5 Prozent liegen bzw. wären dann knapp 60 Prozent der Bevölkerung 45 Jahre oder älter (siehe Abbildung 14).74

72 Vgl. Bevölkerungsprognose 2015 der Statistik Austria. Die Statistik Austria erstellt im Rahmen der Bevölkerungsprognose insgesamt zehn Prognosevarianten, in denen die Zuwanderung, die Lebenserwartung und die Fertilität variieren. In diesem Bericht wird – sofern nicht explizit anders erwähnt – auf das Hauptszenario (mittlere Fertilität, Lebenserwartung und Zuwanderung) Bezug genommen.

73 So ging die im Jahr 2014 durchgerechnete Bevölkerungsprognose noch davon aus, dass erst 2025 die Neun-Millionen-EinwohnerInnen-Grenze überschritten wird.

74 Die deutlich jüngere Altersstruktur von MigrantInnen im Vergleich zur einheimischen Bevölkerung ist in der gesamten EU zu beobachten. Aktuell dazu: Europäische Kommission 2015a.
Abbildung 14: Bevölkerungsstruktur, nach Altersgruppen, 2020–2050, Hauptszenario und Hauptvariante ohne Wanderung im Vergleich

Die alternde Gesellschaft

Abbildung 15: Entwicklung der Gesamtbevölkerung, nach Bundesländern

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>2015–2025</th>
<th>2025–2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Österreich</td>
<td>3,0%</td>
<td>6,2%</td>
</tr>
<tr>
<td>Wien</td>
<td>4,1%</td>
<td>7,2%</td>
</tr>
<tr>
<td>Vorarlberg</td>
<td>3,6%</td>
<td>7,4%</td>
</tr>
<tr>
<td>Tirol</td>
<td>3,7%</td>
<td></td>
</tr>
<tr>
<td>Steiermark</td>
<td>1,3%</td>
<td></td>
</tr>
<tr>
<td>Salzburg</td>
<td>1,6%</td>
<td>4,8%</td>
</tr>
<tr>
<td>Oberösterreich</td>
<td>2,9%</td>
<td>5,1%</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td></td>
<td>4,4%</td>
</tr>
<tr>
<td>Kärnten</td>
<td>0,3%</td>
<td>4,4%</td>
</tr>
<tr>
<td>Burgenland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: STATcube – Statistische Datenbank von Statistik Austria, Bevölkerungsprognose 2015; eigene Berechnungen, eigene Darstellung

In Wien wird im Jahr 2035 der Anteil der Bevölkerungsgruppe »75 Jahre und älter« mit prognostizierten 9,7 Prozent deutlich unter dem österreichischen Durchschnitt liegen (12,6 Prozent). Die höchsten Anteile werden voraussichtlich Kärnten mit 15,8 Prozent und das Burgenland mit 15,2 Prozent aufweisen. In Wien war bereits 2015 der Bevölkerungsanteil der Altersgruppe 75+ mit 7,3 Prozent im Österreich-Vergleich (8,7 Prozent) am niedrigsten und der Anteil im Burgenland mit 10,5 Prozent und in Kärnten mit 10,0 Prozent am höchsten. In Wien werden als einzigem Bundesland im Jahr 2050 mehr Kinder (bis 14 Jahre) leben als Angehörige der Altersgruppe 75+. In Kärnten hingegen wird dann voraussichtlich die älteste Gruppe beinahe doppelt so groß sein wie die jüngste.
Abbildung 16: Veränderung der Altersgruppe »75 Jahre und älter«, 2015–2025 und 2025–2035, nach Bundesländern

5.1 Erwartete Auswirkungen auf Entwicklung und Struktur der Erwerbsbevölkerung

Die Auswirkungen der alternden Bevölkerungsstruktur auf die Struktur der Erwerbsbevölkerung sind auch auf gesamteuropäischer Ebene ein zentrales Thema. Aktuell wird damit gerechnet, dass innerhalb der EU der Höhepunkt der Beschäftigung im Jahr 2022 erreicht wird, dann werden in den EU-Mitgliedstaaten 217,6 Millionen Menschen in Beschäftigung sein. Ab 2023 werden demnach sowohl die Beschäftigung als auch die Bevölkerung im erwerbsfähigen Alter sinken, dabei kann auf europäischer Ebene als genereller Trend festgehalten werden, dass:

• das Arbeitskräfteangebot und die Zahl der Erwerbstätigen abnehmen wird;
• die Arbeitslosenrate etwas zurückgehen wird;
• die Erwerbsquote steigen wird, insbesondere bei Frauen, aber auch bei Älteren.

Abbildung 17: EU-27-Bevölkerung, nach Geschlecht, Alter und Erwerbstätigkeit, 2010 und 2030 (in Millionen)

Diese Entwicklungen laufen in den EU-Mitgliedstaaten jedoch nicht gleichförmig ab. So schrumpft in einigen Mitgliedsländern, wie z. B. in Deutschland und einigen osteuropäischen EU-Staaten, die Bevölkerung im erwerbsfähigen Alter bereits, ab 2020 wird diese Entwicklung die meisten EU-Mitgliedsländer betreffen.76

Tabelle 6: Anteil der Bevölkerung im erwerbsfähigen Alter an der Gesamtbevölkerung, 2000–2030

<table>
<thead>
<tr>
<th></th>
<th>Bevölkerung Gesamt (= 100%)</th>
<th>Bis 14 Jahre</th>
<th>15–64 Jahre</th>
<th>65+ Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolut</td>
<td>Prozent</td>
<td>Absolut</td>
<td>Prozent</td>
</tr>
<tr>
<td>2000</td>
<td>8.011.566</td>
<td>1.365.466</td>
<td>17,0 %</td>
<td>5.410.260</td>
</tr>
<tr>
<td>2010</td>
<td>8.361.069</td>
<td>1.239.281</td>
<td>14,8 %</td>
<td>5.644.186</td>
</tr>
<tr>
<td>2015</td>
<td>8.620.822</td>
<td>1.229.722</td>
<td>14,3 %</td>
<td>5.794.465</td>
</tr>
<tr>
<td>2020</td>
<td>8.939.242</td>
<td>1.276.491</td>
<td>14,3 %</td>
<td>5.937.572</td>
</tr>
<tr>
<td>2025</td>
<td>9.155.847</td>
<td>1.321.759</td>
<td>14,4 %</td>
<td>5.910.586</td>
</tr>
<tr>
<td>2030</td>
<td>9.313.617</td>
<td>1.346.076</td>
<td>14,5 %</td>
<td>5.788.583</td>
</tr>
</tbody>
</table>

Quelle: STATcube – Statistische Datenbank von Statistik Austria, Bevölkerungsprognose 2015; eigene Berechnungen

Der Rückgang der Bevölkerungszahl im erwerbsfähigen Alter (15 bis 64 Jahre) ab 2020 kann jedoch nicht 1:1 mit einem Rückgang der Erwerbsbevölkerung gleichgesetzt werden. Nicht nur das Alter, sondern auch Geschlecht und Bildungsstand tragen zu erheblichen Unterschieden im Erwerbsverhalten verschiedener Bevölkerungsgruppen bei und beeinflussen so das Arbeitskräfteangebot.

77 Zu Redaktionsschluss dieses Berichtes lag noch keine Prognose der Erwerbsbevölkerung basierend auf den Daten der Bevölkerungsprognose 2015 vor. So sind insbesondere die Effekte der jüngsten Migrationsbewegungen aus dem Nahen und Mittleren Osten nach Europa ab dem Sommer 2015 noch nicht berücksichtigt.

79 Ein ausführlicher Vergleich findet sich in Mayrhuber 2012.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>3.788.100</td>
<td>3.742.100</td>
<td>2.625.600</td>
<td>1.530.100</td>
</tr>
<tr>
<td>2003</td>
<td>3.963.100</td>
<td>3.933.200</td>
<td>2.703.100</td>
<td>1.526.400</td>
</tr>
<tr>
<td>Veränderung 1994–2003</td>
<td>175.000</td>
<td>191.100</td>
<td>77.500</td>
<td>–3.700</td>
</tr>
<tr>
<td>Prozent</td>
<td>4,6 %</td>
<td>5,1 %</td>
<td>3,0 %</td>
<td>–0,2 %</td>
</tr>
<tr>
<td>2004</td>
<td>3.890.200</td>
<td>3.864.700</td>
<td>2.825.100</td>
<td>1.625.500</td>
</tr>
<tr>
<td>2013</td>
<td>4.336.200</td>
<td>4.261.200</td>
<td>2.781.600</td>
<td>1.382.200</td>
</tr>
<tr>
<td>Veränderung 2004–2013</td>
<td>446.000</td>
<td>396.500</td>
<td>–43.500</td>
<td>243.300</td>
</tr>
<tr>
<td>Prozent</td>
<td>11,5 %</td>
<td>10,3 %</td>
<td>–1,5 %</td>
<td>–15,0 %</td>
</tr>
</tbody>
</table>

Da die Prognose zur Erwerbsbevölkerung der Statistik Austria geringfügige Beschäftigung nicht berücksichtigt, geht sie für 2013 von 4,14 Millionen Erwerbspersonen aus. Bis 2020 wird ihre Zahl voraussichtlich um rund 100.000 auf 4,24 Millionen ansteigen und in der darauffolgenden Dekade kontinuierlich sinken. Mit 4,17 Millionen zählen jedoch im Jahr 2030 noch immer mehr Personen als 2013 zur Erwerbsbevölkerung. Eine jüngst vom WIFO erstellte Prognose zur Erwerbsbeteiligung kommt sogar zu dem Schluss, dass bis 2030 nicht mit einem Rückgang des Arbeitskräfteangebotes zu rechnen ist. Die Analyse bezieht das Ausbildungs-

82 Vgl. Horvath / Mahringer 2014.
Die alternde Gesellschaft

niveau, Trends im Erwerbsverhalten innerhalb einzelner Alters- und Ausbildungsgruppen sowie jüngste Veränderungen im Pensionsrecht mit ein. Grundsätzlich muss jedoch auch bei den weiteren Ausführungen dieses Kapitels berücksichtigt werden, dass mittelfristige Prognosen zum Arbeitskräfteangebot großen Unsicherheiten unterliegen, die insbesondere aus der Migration kommen und ebenso aus zum Teil nur schwer vorhersehbaren Reaktionen auf pensionsrechtliche Änderungen bzw. eventuelle zukünftige Änderungen im Pensionszugang.

Die Prognose der Statistik Austria stellt auch Daten auf Ebene der Bundesländer zur Verfügung, und diese zeigen wiederum eine Sonderstellung für Wien und Kärnten. In drei Bundesländern (Burgenland, Steiermark, Kärnten) wird mit einer durchgehend rückläufigen Zahl an Erwerbspersonen gerechnet, allerdings wird voraussichtlich in keinem anderen Bundesland die Erwerbsbevölkerung so stark zurückgehen wie in Kärnten (siehe Tabelle 8). Die aktuelle Modellrechnung reicht bis 2050, und Kärntens Erwerbsbevölkerung schrumpft bis dahin voraussichtlich auf knapp 215.000. Ganz anders die Vorschau für Wien: In Wien wird die Erwerbsbevölkerung kontinuierlich wachsen, die aktuelle Schätzung geht für 2050 von 1,02 Millionen Erwerbspersonen aus.

Tabelle 8: Prognose der Erwerbsbevölkerung bis 2030, nach Bundesländern

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>2013</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgenland</td>
<td>138.046</td>
<td>134.940</td>
<td>131.562</td>
<td>128.702</td>
</tr>
<tr>
<td>Kärnten</td>
<td>254.945</td>
<td>245.588</td>
<td>235.697</td>
<td>226.734</td>
</tr>
<tr>
<td>Niederösterreich</td>
<td>793.269</td>
<td>803.949</td>
<td>796.314</td>
<td>786.885</td>
</tr>
<tr>
<td>Oberösterreich</td>
<td>704.745</td>
<td>707.715</td>
<td>696.386</td>
<td>685.879</td>
</tr>
<tr>
<td>Salzburg</td>
<td>266.451</td>
<td>270.685</td>
<td>267.316</td>
<td>262.722</td>
</tr>
<tr>
<td>Steiermark</td>
<td>577.878</td>
<td>574.631</td>
<td>561.768</td>
<td>549.513</td>
</tr>
<tr>
<td>Tirol</td>
<td>353.225</td>
<td>367.635</td>
<td>367.462</td>
<td>364.617</td>
</tr>
<tr>
<td>Vorarlberg</td>
<td>184.036</td>
<td>191.603</td>
<td>191.933</td>
<td>190.754</td>
</tr>
<tr>
<td>Wien</td>
<td>869.787</td>
<td>947.340</td>
<td>969.358</td>
<td>978.245</td>
</tr>
<tr>
<td>Österreich</td>
<td>4.142.382</td>
<td>4.244.086</td>
<td>4.217.796</td>
<td>4.174.051</td>
</tr>
</tbody>
</table>

Quelle: Statistik Austria, Erwerbsprognose 2010 (Neudurchrechnung 2014)

hernd stabil und diese Bundesländer verlieren auch bis 2030 prozentuell betrachtet deutlich weniger Erwerbspersonen als die anderen sechs Bundesländer (siehe Abbildung 18).

Quelle: Statistik Austria, Erwerbsprognose 2010 (Neudurchrechnung 2014); eigene Berechnungen, eigene Darstellung

5.2 Die alternde Erwerbsbevölkerung

mit einem Minus von rund 131.000, als auch prozentual (–21 Prozent) wird der stärkste Rückgang für die 40- bis 44-Jährigen prognostiziert. Deutlich ist auch der Rückgang in der jüngsten Altersgruppe, knapp ein Fünftel weniger 15- bis 19-Jährige werden 2020 im Vergleich zu 2010 zu den Erwerbspersonen zählen, was auch den Trend zu längeren Ausbildungen widerspiegelt.

<table>
<thead>
<tr>
<th>Alter</th>
<th>2013</th>
<th>2025</th>
<th>Absolut</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–19 Jahre</td>
<td>185.858</td>
<td>158.459</td>
<td>–27.399</td>
<td>–14,7 %</td>
</tr>
<tr>
<td>20–24 Jahre</td>
<td>375.368</td>
<td>344.835</td>
<td>–30.533</td>
<td>–8,1 %</td>
</tr>
<tr>
<td>25–29 Jahre</td>
<td>467.661</td>
<td>471.742</td>
<td>4.081</td>
<td>0,9 %</td>
</tr>
<tr>
<td>30–34 Jahre</td>
<td>494.646</td>
<td>542.103</td>
<td>47.457</td>
<td>9,6 %</td>
</tr>
<tr>
<td>35–39 Jahre</td>
<td>486.763</td>
<td>532.620</td>
<td>45.857</td>
<td>9,4 %</td>
</tr>
<tr>
<td>40–44 Jahre</td>
<td>576.781</td>
<td>535.124</td>
<td>–41.657</td>
<td>–7,2 %</td>
</tr>
<tr>
<td>45–49 Jahre</td>
<td>618.372</td>
<td>495.422</td>
<td>–122.950</td>
<td>–19,9 %</td>
</tr>
<tr>
<td>50–54 Jahre</td>
<td>524.073</td>
<td>503.468</td>
<td>–20.605</td>
<td>–3,9 %</td>
</tr>
<tr>
<td>55–59 Jahre</td>
<td>321.412</td>
<td>447.766</td>
<td>126.354</td>
<td>39,3 %</td>
</tr>
<tr>
<td>60–64 Jahre</td>
<td>84.725</td>
<td>177.500</td>
<td>92.775</td>
<td>109,5 %</td>
</tr>
<tr>
<td>65+ Jahre</td>
<td>6.723</td>
<td>8.757</td>
<td>2.034</td>
<td>30,3 %</td>
</tr>
<tr>
<td>Zusammen</td>
<td>4.142.382</td>
<td>4.217.796</td>
<td>75.414</td>
<td>1,8 %</td>
</tr>
</tbody>
</table>

Quelle: Erwerbsprognose Statistik Austria [Abfrage am 22.5.2015 der Trend-(Haupt-)Variante nach Alter in 5-Jahresgruppen und Erwerbspersonen ohne geringfügig Erwerbstätige im Jahresdurchschnitt]; eigene Berechnungen, eigene Darstellung

Bei den jüngeren Altersgruppen zeigen sich die stärksten Verschiebungen bei den Unter-25-Jährigen, ihr Anteil an der Erwerbsbevölkerung sinkt von 13,5 Prozent auf voraussichtlich 11,9 Prozent. Im Vergleich zu den älteren Gruppen verschieben sich die Anteile der Altersgruppen ab Mitte der 20er und in den 30ern an der Erwerbsbevölkerung weniger (siehe Abbildung 20).

Abbildung 20: Anteile der Altersgruppen an der Erwerbsbevölkerung, 2013 und 2025

Quelle: Erwerbsprognose Statistik Austria – STATcube [Abfrage am 24.5.2015 der Trend-(Haupt-)Variante nach Alter in 5-Jahresgruppen und Erwerbspersonen ohne geringfügig Erwerbstätige im Jahresdurchschnitt]; eigene Berechnungen, eigene Darstellung

Aus diesen Verschiebungen lassen sich Klagen über den »Fachkräftemangel« erklären, wenn man eine Präferenz der Unternehmen für jüngere und mittlere Arbeitskräfte annimmt: Wenn sich die Altersstruktur des Potenzials verschiebt, so ändert sich die BewerberInnenstruktur, und anstelle der gewohnten jüngeren BewerberInnen melden sich weniger gewünschte ältere – es gibt einen »(…) ›Fachkräftemangel‹ an jüngeren, gewünschten Fachkräften«, so ein Befund des österreichischen Bildungsforschers Lorenz Lassnigg vom Institut für Höhere Studien. 83

5.3 Jobmöglichkeiten durch Ersatznachfrage

CEDEFOP hat zwar drei Szenarien berechnet, grundsätzlich führt jedoch das sehr hohe Niveau der Ersatznachfrage, die gegenüber Schwankungen in der Wirtschaftsentwicklung relativ stabil ist, dazu, dass sich in allen drei Szenarien Beschäftigungsmöglichkeiten in allen Berufen und auf allen Qualifikationsniveaus eröffnen werden. Zwar werden Jobs auf allen Ebenen frei, allerdings werden sich die Jobs, die die Nachkommenden antreten, erheblich von jenen unterscheiden, die die ältere Generation verlassen. Sie ändern sich hinsichtlich ihrer Tätigkeitsprofile und Anforderungsniveaus, in Summe ändern sich auch die Berufe, die Sektoren und die Qualifikationsstruktur.

5.4 Veränderte Bedarfe

84 Vgl. CEDEFOP Online [»Job Opportunities« nach dem Basisszenario, Abfrage am 18.8.2015].
85 Vgl. CEDEFOP 2012, Seite 36.

Die Bedrohungsszenarien beziehen sich überwiegend auf die steigenden Kosten, die auf das Sozial-, Gesundheits- und Pflegesystem zukommen. Unbestritten bedeutet die alternde Gesellschaft Mehrausgaben für die öffentlichen Haushalte, die sich insbesondere aus den Komponenten Pensionen, Gesundheitsvorsorge und Pflege zusammensetzen. Im Vergleich zu anderen EU-Mitgliedsstaaten wird allerdings der Anstieg in den Ausgaben für Österreich als moderat eingeschätzt.

91 Vgl. WIFO / AMS 2014.
Die alternde Gesellschaft

Das Gesundheits- und Sozialwesen, das bereits aktuell eine enorme Bedeutung für die Beschäftigung hat, diesen Stellenwert noch weiter ausbauen.

93 Erstellt von der Europäischen Kommission und UNECE, berücksichtigt werden anhand einer Reihe von Indikatoren die Beteiligung am Erwerbsleben, die Beteiligung im gesellschaftlichen Leben sowie die Möglichkeiten für ein unabhängiges, gesundes und sicheres Leben. www1.unece.org/stat/platform/display/AAI/Active+Ageing+Index+Home.
Entwicklung also einer strikten NutzerInnenorientierung folgen, um deren Akzeptanz zu gewährleisten und um tatsächlich die älteren bzw. auch (hoch-)betagten Menschen erreichen zu können.\(^96\) Die Sicherung der Lebensqualität angesichts des demographischen Wandels und die Entwicklung neuer und systemischer Forschungsansätze mit sozialen und produktbezogenen Innovationen sind Teil der 2011 von der österreichischen Bundesregierung verabschiedeten FTI-Strategie.\(^97\) Auch die Europäische Kommission führt ein AAL-Forschungsprogramm, das bereits 2007 begonnen wurde, zumindest bis 2020 fort.\(^98\)

Die drei hier angeführten Beispiele – vom steigende Bedarf an klassischen Gesundheits- und Pflegedienstleistungen bis hin zu sozialen und technologischen Innovationen – stehen stellvertretend für die große Bandbreite an Impulsen, die durch die alternde Gesellschaft nachfrageseitig auf den Arbeitsmarkt verstärkt einwirken werden. Von eher niedrigen Qualifikationsniveaus, beispielsweise in der Pflegehilfe, bis hin zu hochspezialisierten Tätigkeiten (z.B. Medizintechnik, Pflegewissenschaften), die häufig eine akademische Ausbildung erfordern, werden sich durch die speziellen Bedarfsstrukturen der wachsenden Gruppe der Älteren Beschäftigungsmöglichkeiten auf allen Qualifikationsniveaus eröffnen.

5.5 Fazit

6 Digitalisierung der Arbeitswelt

6.1 Wegbereiter der vernetzten Gesellschaft:
Digitalisierung, Mobiles Internet und Cloud Computing

99 Das Zukunftsinstitut beispielsweise identifiziert elf Megatrends; die Digitalisierung wird dabei nicht eigens als Megatrend beschrieben, deckt sich jedoch stark mit dem Megatrend »Konnektivität«; www.zukunftsinstitut.de/dossier/megatrends.

Abbildung 21: Wachstumskurve vernetzter Geräte

<table>
<thead>
<tr>
<th>1995</th>
<th>2000</th>
<th>2013</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Mil.</td>
<td>10 Mrd.</td>
<td>50 Mrd.</td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Bauer et al. 2014, Seite 17 (BYOD: Bring your own device)

Mit der unbegrenzten Verfügbarkeit von Informationen über das Internet verändern sich die Beziehungen zwischen Unternehmen und KundInnen erheblich, denn was vor zehn Jah- ren noch Beratungsexpertise war, kann sich heute eine Person – bei ausreichenden digitalen Kompetenzen – relativ rasch aneignen: »Jeder Berufstätige muss sich fragen, ob er einem Men- schen, der nach zwei Stunden Internetsurfen noch offene Fragen hat, noch einen wertvollen Rat

\(^{100}\) Vgl. Statistik Austria, Europäische Erhebung über den IKT-Einsatz in Haushalten 2015.

Quelle: Statistik Austria, Europäische Erhebung über den IKT-Einsatz in Haushalten 2003–2015

106 Statistik Austria, Europäische Erhebung über den IKT-Einsatz in Unternehmen 2015.
Aktuell haben in Österreich beinahe alle Unternehmen (rund 99 Prozent) Internet-Zugang. Rund 91 Prozent der Unternehmen verfügen über eine feste Breitbandverbindung zum Internet, 2003 lag dieser Anteil noch bei rund 49 Prozent. 22 Prozent der Beschäftigten in Österreichs Unternehmen sind von ihrem Arbeitgeber inzwischen mit tragbaren Geräten mit mobilem Internet-Zugang (z.B. Laptop, Tablet oder Mobiltelefon) ausgestattet.107

Obwohl Cloud Computing zunehmend auch im Privatbereich eingesetzt wird, gilt als der eigentliche Treiber der Unternehmenssektor: Von der medizinischen Bildverarbeitung in der Cloud über Kommunikations- und Kollaborationsplattformen für Kanzleien, Unternehmen und Banken, Verkehrsplanung und E-Ticketing in der Cloud, Smart Metering bis hin zum mobilen Echtzeitvoting.110 Cloud-Lösungen setzen sich vor allem dort durch, wo Unternehmen sich nicht unterscheiden, also bei standardisierten bzw. standardisierbaren Prozessen. Das betrifft insbesondere das Personalwesen, die Rechnungslegung oder den Einkauf. Damit legt Cloud Computing auch die Basis für die »Globalisierung der Kopfarbeit«.111

107 Vgl. Statistik Austria, Europäische Erhebung über den IKT-Einsatz in Unternehmen.
108 Vgl. BITKOM 2009.
109 Vgl. Radauer / Good 2012.
110 In BITKOM (2013) werden 34 Geschäftsmodelle beschrieben, die auf Cloud Computing basieren.
111 Boes / Kämpf 2011.
6.2 Von der App-Economy zur »Industrie 4.0«

Die digitale Transformation bringt eine ganze Reihe technologischer Innovationen, die dazu geeignet sind, ganze Branchen neu zu strukturieren, insbesondere aber neue Prozesse zu entwickeln und darüber Branchen neu zu strukturieren. Die Informatisierung und Digitalisierung reicht in alle Teile des Wirtschaftslebens hinein und hat weite Bereiche unseres Alltagslebens erreicht. Apps sind bereits für Viele sichtbarer Teil dieses Alltagslebens geworden, das »Internet der Dinge« und »Industrie 4.0« sind hingegen aktuell noch in einem sehr frühen Entwicklungsstadium.

6.2.1 Die App-Economy

einerseits Spiele und andere »Spaßanwendungen«, andererseits aber auch mehr oder weniger nützliche »Helferlein« für den Alltag. Die US-AmerikanerInnen dürften inzwischen mehr Zeit mit der Nutzung mobiler Apps verbringen als vor dem Fernsehgerät.113

Die Zukunftshoffnungen liegen jedoch im Businessbereich. Tatsächlich spielen mobile Apps in Unternehmen zur Optimierung von Arbeitsabläufen, zur Unterstützung von Geschäftsprozessen und zur Unterstützung von Vertrieb und Marketing zunehmend eine Rolle. Meist handelt es sich dabei um Speziallösungen, die in bestehende Software-Lösungen integriert werden. Tatsächlich ist die Palette der möglichen Anwendungen schier endlos. Vom Einsatz in Krankenhäusern zur Unterstützung des ärztlichen und pflegerischen Personals114 bis hin zum öffentlichen Verkehr sind Apps in jedem Wirtschaftsbereich einsetzbar.115

\textbf{Abbildung 24: Jobentwicklung in der europäischen App-Economy, 2013–2018}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{eu_app_economy_jobs.png}
\caption{EU app economy jobs, 2013-2018}
\end{figure}

Quelle: Breslin et al. 2014, Seite 15

116 Vgl. Vision Mobile 2014. An der Erhebung haben sich mehr als 10.000 EntwicklerInnen beteiligt, davon 30,7 Prozent aus Europa, 37,1 Prozent aus Asien und 24,6 Prozent aus Nordamerika.
117 Vgl. Breslin et al. 2014, Seite 34.

6.2.2 Das »Internet der Dinge«

Die Anwendungsgebiete sind enorm vielfältig, und die Nutzungsmöglichkeiten scheinen nahezu unbegrenzt. Das »Internet der Dinge« bildet die Basis für die so genannten »Smartten Systeme«, wie z.B. »Smart Buildings«, »Smart Homes«, »Smart Cities« oder auch »Smart

Digitalisierung der Arbeitswelt

Das »Internet der Dinge« steckt noch in den Kinderschuhen, eine jüngste Studie des Beratungsunternehmens McKinsey geht jedoch davon aus, dass seine wirtschaftliche Bedeutung bis 2025 enorm zunehmen wird.121 Der wirtschaftliche globale Mehrwert (»Economic Impact«) wird für das Jahr 2025 auf 3,9 bis 11,1 Billionen US-Dollar geschätzt, letztere Zahl würde rund elf Prozent der für 2025 erwarteten globalen Wirtschaftsleistung entsprechen. Die relativ große Bandbreite in der Schätzung wird durch mehrere Faktoren begründet. Ein wesentlicher Faktor ist die noch schwer abschätzbare Akzeptanz durch KundInnen, NutzerInnen und Beschäftigte. Damit das »Internet der Dinge« das ihm zugesprochene Potenzial verwirklichen kann, sind außerdem weitere Entwicklungen auf der technologischen Ebene erforderlich, die auch einen kosteneffizienten Einsatz der Systeme ermöglichen, vor allem kostengünstige Sensoren (insbesondere RFID) und Batteriesysteme. Eine wichtige Voraussetzung für das Funktionieren der IoT-Welt ist die so genannte »Interoperabilität«, also das funktionierende Zusammenwirken von verschiedenen Systemen und Techniken. Dazu sind in aller Regel akzeptierte Standards bzw. zumindest Schnittstellen nötig, die ein möglichst nahtloses Zusammenarbeiten ermög-

120 Vgl. »Das IoT eröffnet eine neue IT-Dimension. McKinsey über das Internet of Things«, www.computerwoche.de/a/mckinsey-ueber-das-internet-of-things,3212889.
121 Vgl. McKinsey&Company 2015a.

6.2.3 »Industrie 4.0«: Internet trifft auf Industrie

Das Konzept »Industrie 4.0« ist Teil des Aktionsplanes der deutschen Bundesregierung zur Hightech-Strategie 2020 und beschreibt die nächste Entwicklungsstufe in der Industrie, und diese dürfte mit dem traditionellen Industriemodell nur mehr wenig gemeinsam haben. Das Konzept »Industrie 4.0« ist eine Reaktion auf die wachsende Dynamik, die an die Produktion steigende Anforderungen stellt: zunehmende Produkt- und Prozesskomplexität in Verbindung mit volatilen Märkten und die sich stetig verkürzenden Produkt-, Markt-, Technologie- und Innovationszyklen. Des Weiteren wirken hohe Rohstoffpreise und die in Deutschland sich bereits abzeichnenden Auswirkungen des demographischen Wandels in Richtung »Industrie 4.0«.122

An diese futuristisch klingenden Konzepte sind hohe Erwartungen geknüpft.126 Im Zeitalter der »Industrie 4.0« kann auf Veränderungen schnell reagiert werden, da Abläufe ad-hoc angepasst werden können. Produktionsprozesse könnten damit einfach und standortübergreifend (auch global) optimiert werden, und zwar sowohl hinsichtlich Qualität und Preis als auch Ressourceneffizienz. Aufgrund der flexiblen Abläufe und der Möglichkeit der raschen Umstellung kann sogar die Produktion von Einzelstücken und Kleinmengen rentabel sein (Stichwort: Maßfertigung in der Massenproduktion). Die »intelligenten« Objekte sammeln viel-

fältige Daten, auf deren Basis innovative Services und Angebote entwickelt werden können, und durch die stärkere Integration der MitarbeiterInnen, KundInnen und BenutzerInnen der Produkte soll auch eine Basis für die Entwicklung völlig neuer Geschäftsmodelle entstehen.

Zwar wird Automatisierung für immer kleinere Serien möglich, dennoch betonen die ProponentInnen von »Industrie 4.0«, dass menschliche Arbeit weiterhin ein wichtiger Bestandteil der Produktion sein werde, denn vollständige Autonomie dezentraler, sich selbst steuernder Objekte werde es auf absehbare Zeit nicht geben. Menschliche Fähigkeiten bleiben erforderlich zur Bewältigung komplex zu erfassender Situationen. Eingriffe in laufende und selbststeuernde Systeme sind zeitkritisch und auch zukünftig erforderlich. Dabei werden die Anforderungen an die zeitliche, inhaltliche und räumliche Flexibilität der MitarbeiterInnen allerdings signifikant steigen. Aufgaben der traditionellen Produktions- und Wissensarbeit werden stärker zusammenwachsen, es wird voraussichtlich neue Qualifikationsprofile geben, wie beispielsweise den / die »ProduktionsinformatikerIn«. Der Einsatz von Mobilgeräten wird als wesentlicher Eckpfeiler für die Arbeit in »Industrie 4.0« eingeschätzt. Die Hoffnungen richten sich daher auch auf die nachkommende Generation, die als Digital Natives einen völlig anderen Zugang zur Nutzung jener Technologien (z.B. Mobiles Internet über Smartphones und Tablets) habe, die für das Arbeiten in »Industrie 4.0« von Relevanz sind.

6.3 IKT als Beschäftigungshoffnung

Bereits 2010 wurde in der so genannten »Digitalen Agenda« hervorgehoben, dass die volle Nutzung des IKT-Potenzials bei der Bewältigung dringender gesellschaftlicher Heraus-

Abbildung 25: Prognostizierte Entwicklung der Arbeitsmarktnachfrage und des Arbeitsmarktangebotes an IT-Fachkräften im EU-Raum, 2012–2020

Quelle: Europäische Kommission 2014, Seite 7

Die Nachfrage nach IKT-Fachkräften wird laut Basisszenario bis 2020 auf knapp 8,9 Millio-
nen steigen, rund 913.000 IKT-Arbeitsplätze können dann voraussichtlich nicht besetzt wer-
den. Die größten Engpässe gibt es in Großbritannien, Deutschland und Italien, wo insgesamt
60 Prozent aller freien Stellen in Europa auszumachen sind.

Im Jahr 2012 waren in Europa 7,4 Millionen Menschen in IKT-Berufen beschäftigt, das sind
3,4 Prozent der Beschäftigten. Rund 1,5 Millionen der Arbeitsplätze entfielen auf die Bereiche
von Management, Architektur und Analyse. 3,4 Millionen waren als Fachkräfte wie Entwickler-
Innen, Engineers oder Administratoren beschäftigt, weitere 2,5 Millionen auf Associate- oder
TechnikerInnen-Level.134

6.3.1 IKT-Beschäftigungstrends in Österreich

Inzwischen zählen die Informations- und Kommunikationstechnologien zu den so ge-
nannten »Basistechnologien«, die als Grundvoraussetzung für Produktion und Leistungs-
erstellung in alle andere Wirtschaftssektoren hineinwirken.135 Dementsprechend hat der
IKT-Sektor eine erhebliche Multiplikatorwirkung. Berechnet auf dem Aktivitätsniveau von
2011 bedeutet ein zusätzlicher Arbeitsplatz im österreichischen Software- und IT-Bereich
gesamtwirtschaftlich 3,1 zusätzliche Arbeitsplätze (in Vollzeitäquivalenten), und ein Euro
Wertschöpfung im Software- und IT-Bereich bedeutet 2,29 Euro für die gesamte Wert-
schöpfung.136

6.3.1.1 Beschäftigung im IKT-Sektor

Die wachsende Bedeutung des IKT-Sektors spiegelt sich auch in einer zunehmend feineren
statistischen Erfassung wider. Seit 2006 werden dem IKT-Sektor Wirtschaftsklassen aus der
»Produktion«, aus dem »Großhandel«, aus dem Abschnitt »Informations- und Kommuni-
kation« sowie aus den »Sonstigen Dienstleistungen« zugeordnet.137 Die statistische Abgren-
zung des IKT-Sektors erfolgt seit 2008 entlang der Wirtschaftsklassen (4-Steller) der ÖNACE
2008-Systematik, 20 Wirtschaftsklassen bilden den IKT-Sektor ab.138 Aus der Leistungs-
und Strukturstatistik standen zum Zeitpunkt der Berichtslegung für die vorliegende Studie Daten
für die Jahre 2008 bis 2013 zur Verfügung.

135 Zu den Basistechnologien (auch als General Purpose Technologies bezeichnet) zählen auch Energie, Wasser und
137 Vgl. Kompetenzzentrum Internetgesellschaft 2013, Seite 5.
138 Vgl. dazu ausführlich in Haberfellner 2015.

Abbildung 26: Veränderung der Zahl der Unternehmen und der Beschäftigten, IKT-Sektor und Gesamtwirtschaft, 2008–2013

6.3.1.2 Erwerbstätige in IKT-Berufen

139 Die Berufsuntergruppe »InformatikerInnen« (ISCO-88) umfasste ihrerseits drei Berufsgattungen.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Abbildung_27.png}
\caption{Abbildung 27: Erwerbstätige in IKT-Berufen, 2005–2014 (Mikrozensus-Arbeitskräfteerhebung)}
\end{figure}

Zusammenfassend lag 2014 die Zahl der Erwerbstätigen im Kernsegment der IKT-Berufe, die unmittelbar mit der Herstellung von IKT-Gütern und IKT-Dienstleistungen beschäftigt waren, bei knapp 98.000. Mit weiteren 12.000 Führungskräften in der Erbringung von IKT-Dienstleistungen sind somit rund 110.000 Erwerbstätige den IKT-Berufen zuzuordnen. Diese Zahl bezieht sich nur auf Erwerbstätige der Berufshauptgruppen 1 bis 3 und damit auf die Skill Levels 3 bis 4, also auf durchgehend höher- und hochqualifizierte Erwerbstätige. Die IKT-Berufe sind jedoch nicht nur durch ein überdurchschnittlich hohes Qualifikationsniveau gekennzeichnet,

140 Vgl. Haberfellner / Sturm 2014 und Haberfellner / Sturm 2012.
sondern auch durch eine eher junge Belegschaft, durch einen nach wie vor geringen Frauenanteil an den Beschäftigten sowie durch einen hohen Anteil der Beschäftigung in urbanen Zentren.\footnote{Der Anteil der Frauen an den Erwerbstätigen bewegte sich in den Jahren 2011 bis 2013 zwischen zehn und zwölf Prozent, vgl. dazu Haberfellner 2015.}

Tabelle 11: Unselbständige Beschäftigung in IKT-Berufen, nach Berufs(haupt)gruppen, 2013–2020

<table>
<thead>
<tr>
<th>Berufshauptgruppe 2 – Akademische Berufe</th>
<th>2013</th>
<th>2020</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolut</td>
<td>Absolut</td>
<td>Prozent/Jahr</td>
</tr>
<tr>
<td>Davon: Akademische und vergleichbare Fachkräfte</td>
<td>502.300</td>
<td>595.000</td>
<td>2,4%</td>
</tr>
<tr>
<td>Berufshauptgruppe 3 – Technische Berufe</td>
<td>56.400</td>
<td>73.900</td>
<td>4,0%</td>
</tr>
<tr>
<td>Davon: Informations- und KommunikationstechnikerInnen</td>
<td>28.700</td>
<td>36.500</td>
<td>3,5%</td>
</tr>
</tbody>
</table>

Quelle: WIFO/AMS 2014, Seite 197

Bereits in der Vergangenheit war die Beschäftigung in IKT-Berufen deutlich durch ein Übergewicht an akademischen Abschlüssen gekennzeichnet (siehe Abbildung 27). Dieser Trend

6.4 Crowdsourcing: Neue Formen atypischer Beschäftigung im digitalen Zeitalter

146 Eine jüngste Erhebung in Deutschland (Hammermann / Stettes 2015) kam zu dem Ergebnis, dass selbst in fast 45 Prozent der deutschen Unternehmen der Informationswirtschaft das Konzept »Crowdworking« noch nicht bekannt ist.

»Spare Cycles« sind Potenziale und Know-how angesprochen, die im eigentlichen Beruf nicht abgerufen werden. Demonstrieren lässt sich das am Beispiel des Online-Lexikons Wikipedia, dessen Wachstum nur durch solche bis dato ungenutzten Ressourcen möglich wurde.

potenziell weltweit 24 Stunden am Tag und sieben Tage in der Woche auf Humanressourcen zugegriffen werden, die in der Lage sind, die jeweilige Aufgabe zu erfüllen. Über Outsourcing kann hingegen »nur« auf den Pool an Humanressourcen zugegriffen werden, der dem beauftragten Unternehmen zur Verfügung steht.

In der Praxis werden über Crowdsourcing Routineaufgaben vergeben, aber auch komplexe oder kreative Aufgaben, und auch das erforderliche Qualifikationsniveau variiert dabei erheblich.152 Es gibt kaum Aufgabenbereiche – von geringen Qualifikationsanforderungen bis hin zum ExpertInnneniveau –, die nicht an die Crowd ausgelagert werden (können):

- Zu den komplexeren Aufgaben gehört das eigenständige Verfassen von Texten, Rezensionen, Forenbeiträgen etc., weiters das Testen von Webanwendungen und Software sowie die Teilnahme an Umfragen.
- Kreative Aufgaben wie Software- und Webentwicklungen, das Lösen komplexer Probleme oder das Bereitstellen kreativer Ideen werden insbesondere im Bereich der Open Innovation über die Crowd abgewickelt.

entstehen neue Formen der Beschäftigung, deren Koppelung mit aktuellen arbeitsrechtlichen Regelungen und Schutzmechanismen derzeit noch weitgehend ungeklärt ist.

Tatsächlich tritt Crowdsourcing in einer Vielzahl an Ausprägungen auf, die eine klare Zuordnung erheblich erschweren. Insbesondere im Bereich der so genannten »Microtasks« oder »Clickjobs« wird das Entstehen eines neuen Tagelöhner(un)wesens befürchtet. Es wird zwar immer wieder darauf hingewiesen, dass über die Online-Plattformen, die solche Jobs vermitteln, nur ein Nebenverdienst erreicht werden kann, allerdings dürfte es inzwischen Menschen geben, die solche Microtasks zu ihrer Haupteinnahmequelle machen. Da diese Plattformen international agieren, stehen sie häufig in unmittelbarem Wettbewerb mit Crowdsources in Niedriglohnländern, zum Teil in Entwicklungsländern.

Für Crowdsourcing gilt, was für die gesamte Digitalisierungsdebatte gilt: Wo die einen viel Licht sehen, sehen die anderen viel Schatten. Für die einen steht die Crowd für eine neue Freiheit, Partizipation, Gemeinsamkeit, Kooperation und entfesselte Kreativität. Für die anderen kennzeichnet sie den Beginn eines neuen Tagelöhner(un)wesens, steht sie für Microjobs, Ausnützen und Ausbeuten der KundInnen, Marginalisierung, Prekarisierung – kurz: das Ende der Arbeitswelt, wie wir sie in den letzten Jahrzehnten kannten. In Ihrem

153 Vgl. BITKOM 2014, Seite 5.
155 Vgl. Leimeister/Zogaj 2013, Seite 75f.
Trendbericht »The Evolving Workforce« haben die großen IT-Produzenten Intel und Dell Crowdsourcing zu einem der sieben wichtigsten Trends in der Arbeitswelt erkoren. Die für diesen Bericht befragten ExpertInnen sehen zwar einerseits die damit verbundenen verheißungsvollen Aussichten für Unternehmen, weltweit flexibel und auf temporärer Basis – also »just in time« – auf Arbeitskräfte zugreifen und damit genau den gewünschten Arbeitsumfang zukaufen zu können. Sie prognostizieren aber auch potenzielle Problemfelder, die sich durch eine verstärkte Integration von Crowdsourcing in die Unternehmensstrategie abzeichnen. So werden wegen des Potenzials zur Rationalisierung der fest angestellten Belegschaft Bedenken und Unruhe auf Belegschaftsseite erwartet. Da feste Stellen durch Crowdsourcing zur befristeten Vertragstätigkeit mutieren, drohe der Verlust von stabilen Arbeitsverhältnissen ebenso wie eine breiter werdende Kluft bei den Beschäftigungschancen und der Entlohnung einzelner MitarbeiterInnengruppen.

6.5 Teilen statt Besitzen – die Share Economy

Digitalisierung der Arbeitswelt

prototypisches Beispiel dafür gesehen werden, dass durch die neuen Technologien (hier: Mobi-
les Internet, App) neue Geschäftsmodelle entstehen, die quer zu existierenden Strukturen liegen
und diese auch herausfordern. Ein weiteres prominentes Beispiel ist »Airbnb« im Bereich der
Vermietung von Privatzimmern und Ferienwohnungen.161 Das Geschäftsmodell ist das gleiche
wie bei Uber: Airbnb stellt die Plattform zur Verfügung und erhält pro Vermittlung eine Pro-
vision. Mit dem steigenden KundInnenzuspruch bekommt Airbnb jedoch ähnliche Probleme
wie Uber: Die zunehmend verärgerte, etablierte Hotellerie geht mit Klagen gegen die Plattform
vor und versucht, deren Spielräume einzuschränken.162

In den letzten Jahren gab es einen regelrechten Boom an Online-Tauschbörsen und Online-
Mitfahrzentralen. Ob es sich bei diesen neuen Konzepten um einen Trend oder ein »Trend-
chen« handelt,163 lässt sich aus heutiger Sicht noch nicht beurteilen. KritikerInnen sehen nicht
nur bedrohte Geschäftsfelder der traditionellen Wirtschaft, sondern auch das Entstehen neuer
prekärer Jobs. Jedenfalls verschwimmen mit der kommerziell orientierten Sharing Economy
bislang klar gezogene Grenzen und manche sehen das Aufkommen eines neuen Plattform-
Kapitalismus.164 Andere wiederum sehen in der Entwicklung große Chancen und sogar den
Rückzug des Kapitalismus. Rifkin (2014) vertritt die Position, dass sich die industriell geprägte
Gesellschaft in Richtung einer global und gemeinschaftlich orientierten Gesellschaft entwickelt,
in der Teilen mehr Wert als Besitzen haben wird.

6.6 Neue Automatisierungsmöglichkeiten

Galt früher als Prinzip, dass besonders einfache Routinetätigkeiten vor Automatisierung nicht
gefeit sind, so kann diese Aussage – zumindest in dieser Form – heute nicht mehr aufrechterhal-
ten werden. Autofahren beispielsweise wurde lange Zeit als nicht automatisierbar eingeschätzt,
denn Computer, so die landläufige Meinung, könnten den menschlichen Orientierungssinn
nicht ersetzen – Navigationssysteme lösten diese Vorstellung auf, und heute sind sogar selbst-
fahrende Autos keine Utopie mehr. In den letzten Jahren wurden also Tätigkeiten standardisier-
und automatisierbar, die bis zur Jahrtausendwende noch eindeutig als ausschließliche Domäne
des Menschen eingeschätzt wurden.

Inzwischen dringen Algorithmen auch in Tätigkeitsbereiche vor, die bislang als kreativ und
hochspezialisiert eingestuft wurden, und selbst in vielen Berufen von ProfessionistInnen wird
erhebliches Standardisierungspotenzial herausgefiltert. So galt beispielsweise der Journalismus
als eine Hochburg der intelligenten Arbeit, die nur von Menschen durchgeführt werden kann.

161 Weitere Anbieter sind »Wimdu« und »9flats«.
162 Vgl. www.wienerzeitung.at/nachrichten/wirtschaft/oesterreich/644503_Engeres-Korsett-fuer-Airbnb-und-Co.html
oder www.spiegel.de/spiegel/print/d-106677544.html.
163 Vgl. »Sharing Economy. Das Trendchen«, www.zeit.de/2014/28/sharing-economy-wundercar.
164 Vgl. »Die Mensch-Maschine: Auf dem Weg in die Dumpinghölle«, www.spiegel.de/netzwelt/netzpolitik/sascha-

6.7 Digitalisierung: Massenweise Jobvernichtung oder neue Beschäftigungsimpulse?

166 Vgl. »Medizinaroboter auf dem Vormarsch«, www.aerztezeitung.de/praxis_wirtschaft/medizintechnik/article/875213/chirurgie-medizinaroboter-vormarsch.html.

Demgegenüber steht die Beobachtung, dass auf den europäischen Arbeitsmärkten, wie auch schon in den USA, eine zunehmende Polarisierung auszumachen ist, also die Zunahme von Beschäftigungsmöglichkeiten sowohl auf dem oberen als auch auf dem unteren Ende der Qualifikations- und Einkommensskala bei gleichzeitigem Rückgang der mittleren Qualifikations- und Einkommensgruppen. Als wesentliche Quelle für die Polarisierung am Arbeitsmarkt gilt der so genannte »Routine-biased Technological Change«, also die Automatisierung von Routinetätigkeiten, die zuvor insbesondere von den mittleren Qualifikations- und Einkommensgruppen durchgeführt wurden. Eine kürzlich veröffentlichte – auf Deutschland bezogene – Studie kam zu dem Ergebnis, dass Polarisierung fast ausschließlich in deutschen Städten auftritt, wo der »Routine-biased Technological Change« am deutlichsten auszumachen ist.

Angesichts des Umstandes, dass inzwischen Tätigkeitsbereiche auf allen Qualifikationsniveaus nicht mehr vor der Automatisierung gefeit sind, richten sich die Hoffnungen nun auf Tätigkeitsfelder, die Empathie benötigen, wie z.B. in der Pflege- und Betreuungsarbeit bzw. in den »Interaktiven Dienstleistungen«, in denen vermehrt die Aufmerksamkeit darauf gerichtet wird, wie im Zuge von Dienstleistungsprozessen die einzelnen Akteure und Akteurinnen miteinander kommunizieren. Zumindest gilt bislang auch die Fähigkeit, Ideen zu entwickeln und neue Lösungswege zu finden – also kreative Kompetenz – als nicht automatisierbar. Ein mögliches Szenario geht dahin, dass künftig Niedrigqualifizierte durch die Technologie fremdbestimmt arbeiten werden, während Hochqualifizierte und SpezialistInnen sie als Assistenzsysteme nutzen.

170 Vgl. Dauth 2014.
176 Vgl. BITKOM / Prognos 2013.

In welchem Ausmaß Arbeitsplätze künftig durch Automatisierung bedroht sein werden, erscheint heute schwerer abzuschätzen denn je. Autor erwartet, dass der Großteil der Jobs

Digitalisierung der Arbeitswelt

Grundsätzlich basieren alle diese Erwartungen, Berechnungen und Schätzungen auf Modellannahmen, die alleine aufgrund des nicht-linearen Entwicklungspfades der Digitalisierung enormen Unsicherheiten ausgesetzt sind. Einerseits sind weitere Entwicklungs sprünge denkbar, andererseits wirken auch strukturierende Effekte bremsend. Dazu gehören beispielsweise Unsicherheiten über Fragen der IT- und Datensicherheit, nötige Investitionen durch Unternehmen, wobei bereits getätigte Investitionen möglicherweise noch nicht zur Gänze abgeschrieben sind, aber auch die Frage der Entscheidungsfindung in den Unternehmen. So ergab eine Unternehmensbefragung, dass in vielen Unternehmen die Entscheidungen in Richtung »Cloud Computing« maßgeblich durch die IT-Abteilungen beeinflusst werden, die ihrerseits durch die neuen Entwicklungen strukturell erheblich betroffen sind.183 Schon in der Vergangenheit waren selbst Routinetätigkeiten nicht in gleichem Ausmaß automatisierbar bzw. haben sich manche Tätigkeitsbereiche lange Zeit der Automatisierung entziehen können.184 Während in der Produktion und Logistik beispielsweise schon längst komplexe Abläufe automatisiert

181 Vgl. Polanyi 1966.
182 Vgl. Stiglitz 2014.
183 Vgl. PAC 2014.
184 Vgl. Maselli / Beblavý 2013.
sind, dauerte es relativ lange, bis Staubsaug-Roboter entwickelt waren, die mit dem Menschen annähernd konkurrieren können. Algorithmen scheitern auch nach wie vor daran, Inhalte von Bildern zu erkennen.185

Das Fahren eines Autos galt lange als prototypische Tätigkeit, die dem Menschen vorbehalten ist, die also nicht automatisierbar wäre.186 Doch gerade die Entwicklungen rund um selbstfahrende Autos der letzten Jahre haben deutlich gemacht, dass Tätigkeiten und Aufgaben, die vor wenigen Jahren noch nicht als automatisierbar galten, inzwischen sehr wohl durch Computer und Algorithmen durchgeführt werden können. Daraus leitet sich die Frage ab, ob Computer – obwohl sie nicht über implizites Wissen verfügen – letztlich das gleiche Ergebnis erreichen können wie Menschen: »Wenn ein fahrerloses Auto im Verkehr links abbiegt, dann greift es nicht auf eine Quelle der Intuition oder Geschicklichkeit zurück; es folgt einem Programm. Doch während die Strategien grundlegend verschieden sind, sind die praktischen Ergebnisse dieselben. Weil Computer mit übermenschlicher Geschwindigkeit Anweisungen befolgen, Wahrscheinlichkeiten berechnen und Daten erhalten und versenden können, können sie mithilfe expliziten Wissens viele komplizierte Aufgaben ausführen, die wir mit implizitem Wissen lösen.«187

\section*{6.8 Fazit}

186 Vgl. Levy / Murnane 2004, Seite 20.
187 Carr 2014, Seite 22f.

Die Internationale Arbeitsorganisation (ILO) sieht eine Entwicklung, wonach die technologische Entwicklung die Kluft zwischen hochqualifizierten und hochbezahlten Jobs einerseits und schlecht bezahlten Jobs mit geringen Qualifikationsanforderungen andererseits weiter vergrößert. Der technologische Fortschritt bringe jedoch nicht nur Verwerfungen am Arbeitsmarkt mit sich, sondern auch vielfältige positive Effekte, und zwar sowohl für Beschäftigte als auch für Wirtschaft und Gesellschaft. Es sei daher Aufgabe der Politik, ein Umfeld zu schaffen, in dem sowohl die positiven Auswirkungen, wie z.B. geringere Preise oder geringere Emissionsbelastung, ihre Wirkung entfalten können als auch Ungleichheit und Ausgrenzungstendenzen am Arbeitsmarkt effektiv bekämpft werden.¹⁸⁸

7 Auf dem Weg in die Green Economy?

7.1 Megatrend: Klimawandel

Auf dem Weg in die Green Economy?

und Trinkwassermangel« – der Klimawandel sich mit 19 Prozent den zweiten Platz mit der Sorge um die wirtschaftliche Situation teilt.

7.2 Megatrend: Ressourcenknappheit – Ressourceneffizienz

Wird in Zusammenhang mit der Ökologisierung der Wirtschaft von Ressourcenknappheit gesprochen, so werden unter »Ressourcen« natürlich vorkommende Rohstoffe verstanden. Einerseits geht es dabei um Energierohstoffe (z. B. Öl, Kohle, Gas), um Industrierohstoffe (z. B. Metalle, Mineralien, Steine, Erden) und um Wasser.\(^\text{195}\) Diese Ressourcen waren immer schon ein knappes Gut, da sie generell nicht zu jeder Zeit und an jedem gewünschten Ort in der gewünschten Qualität und Menge zur Verfügung stehen. Allerdings erreicht die Ressourcenknappheit eine neue Qualität, da zunehmend das Gefüge von Angebot und Nachfrage für einzelne Ressourcen oder Ressourcenbündel aus dem Gleichgewicht gerät und damit die Preise steigen.\(^\text{196}\)

Global betrachtet führt jedoch das Zusammenspiel von Bevölkerungswachstum, Urbanisierung und Industrialisierung vor allem in den Schwellenländern zu einer erheblichen Zunahme des Energiebedarfes. Der Schwerpunkt der Energienachfrage wird sich maßgeblich in Richtung der aufstrebenden Wirtschaftsregionen, insbesondere nach China, Indien, Südamerika und in die Länder des Nahen und Mittleren Ostens verschieben, die den weltweiten Energieverbrauch um ein Drittel erhöhen. Während sich in den OECD-Ländern der Energieverbrauch aufgrund demographischer Trends und Änderungen in der Wirtschaftsstruktur reduzieren wird, steigt er in Asien erheblich an. Obwohl China auf einen energiesparenden Wachstumskurs ein- schwenkt, wird China voraussichtlich die USA im Jahr 2030 als größten Ölverbraucher ablö-

\(^\text{196}\) Vgl. BMU 2012, Seite 17.

Auf dem Weg in die Green Economy?

Angesichts des Umstandes, dass diese Rohstoffe für eine Vielzahl an zukunftsweisenden Technologien essentiell sind, zählen ein effizienter Ressourceneinsatz und auch das Recycling zu den wichtigsten Strategien zur Sicherung der Versorgung. Seltene Erden finden z. B. Verwendung in Computern und Monitoren, in leistungsstarken Akkus, in Hybrid-Autos, Elektromoto-

toren, Mobiltelefonen, Windturbinen und in der Photovoltaik. Die effiziente Nutzung dieser kritischen Rohstoffe ist auch wichtig, da die die Förderung Seltener Erden mit erheblichen Umweltbelastungen und Umweltrisiken verbunden ist.

7.3 Megatrend: Urbanisierung

Die zunehmende Urbanisierung wird über mehrere Entwicklungen gespeist, die auch Herausforderungen für die Strukturen der Städte implizieren, also zunehmende geographische Mobilität, sinkende Fertilität, steigende Lebenserwartung und alternde Bevölkerung. Städte spielen weiters eine ambivalente Rolle als ökonomische Kraftzentren einerseits und als ökologische Risikozonen andererseits. Das rasante Wachstum der Städte erhöht den Druck auf die

204 Vgl. Öko-Institut e. V. 2011.
Auf dem Weg in die Green Economy?

7.4 Green Economy – das Konzept

Die Folgen der Ressourcenknappheit beschränken sich nicht auf wirtschaftliche Entwicklungsmöglichkeiten. Insbesondere der Zugang zu Öl und Energie haben das Potenzial, die globalen Kräfteverhältnisse und damit in weiterer Folge auch die politischen Außenbeziehungen neu zu bestimmen. Supranationale Organisationen haben auf die Megatrends »Klimawandel« und »Ressourcenknappheit« in den letzten Jahren mit Visionen, Strategien und Roadmaps in

212 Vgl. www.statistik.at/web_de/services/stat_nachrichten/076380.html.

generierte Nutzen (z.B. geringere CO₂-Emissionen, bessere Luft etc.) oftmals der gesamten Öffentlichkeit und nicht nur einzelnen AnwenderInnen der Innovation zugute. Das führt zu einer geringen individuellen Zahlungsbereitschaft für entsprechende Produkte. Somit würde der private Sektor umweltrelevante technologische Neuerungen, wenn sie ausschließlich den Marktkräften überlassen blieben, in einer aus gesellschaftlicher Sicht ungenügenden Rate produzieren. Um dies zu ändern, sind politische Maßnahmen zur Förderung der Innovationstätigkeit vonnöten.217

Der Übergang zu einer emissionsarmen Wirtschaft benötigt darüber hinaus flankierende Maßnahmen, wie z.B. neue Raumordnungskonzepte und Modelle der BürgerInnenbeteiligung. Einigkeit herrscht jedenfalls darüber, dass der Markt keine geeigneten bzw. hinreichenden Rahmenbedingungen und Mechanismen bereitstellt, die den erforderlichen Wandel in Richtung einer Ökologisierung ermöglichen würden und daher auf politischer und regulativer Ebene erhebliche Anstrengungen unternommen werden müssen.218

7.5 Den Fortschritt messen

Die komplexe Dynamik einer solchen »grünen« Umgestaltung erschwert die statistische Erfassung und damit auch die Messung von Fortschritten. Deutlich wird das Dilemma auch bei dem Versuch, mögliche Beschäftigungseffekte zu beschreiben und zu quantifizieren. Green Jobs können entlang einer Reihe von Dimensionen beschrieben und abgegrenzt werden:220

\begin{itemize}
 \item 217 Vgl. Ley/Stucki/Woerter 2013.
 \item 218 Vgl. OECD 2012b.
 \item 219 Vgl. OECD 2014.
 \item 220 Vgl. Europäische Kommission 2013d, Seite 3.
\end{itemize}
Auf einer sektoralen Zuordnung basiert die auch in Österreich eingesetzte Umweltstatistik EGSS. Demnach orientiert sich die Bewertung eines Arbeitsplatzes als Green Job daran, ob das Unternehmen einen Beitrag zur Reduzierung der Umweltbelastung oder zur effizienteren Nutzung der natürlichen Ressourcen leistet. Damit wird z.B. die Tätigkeit als PressesprecherIn oder LohnverrechnerIn eines Umweltberatungsunternehmens zu einem Green Job, die gleiche Tätigkeit in der Erdöl- oder Stahlindustrie ist jedoch kein Green Job.

Eine Betrachtung entlang der eingesetzten Kompetenzen stellt die Frage, in welchem Ausmaß »grüne« Kompetenzen in dem jeweiligen Job zum Einsatz kommen. So ist beispielsweise der Anteil an »grünen« Kompetenzen in Berufen, wie z.B. RecyclingexpertIn oder UmweltberaterIn, sehr hoch, in anderen Berufen (Pflegefachkraft, DatenanalystIn etc.) zu meist nur gering. Allerdings wird davon ausgegangen, dass Green Skills zunehmend alle Berufsbilder durchziehen werden, wenn auch in unterschiedlicher Dichte.

7.6 Die Green Economy als Jobmotor?

Tatsache ist, dass die Konzeptualisierung und insbesondere auch die sehr schwierige statistische Erfassung und Abgrenzung von Green Economy und auch Green Jobs nach wie vor »Work in Progress« sind. Je nachdem, wie eng oder breit gefasst die Definitionen sind,

223 Vgl. u.a. ILO 2013, UNEP 2014 und Ranieri / Martinez 2015, Seite 16.
bewegt sich der geschätzte Anteile der Green Jobs an der Beschäftigung immerhin zwischen einem niedrigen einstelligen Bereich bis hin zu einem Viertel.224 Auch die Zahlen zu den erwarteten Beschäftigungseffekten sind als äußerst vage zu bezeichnen, sie sind eher als Abschätzung des Potenzials und als Zielgrößen zu verstehen. Einige Schlaglichter der quantitativen Schätzungen:

- Die ILO geht davon aus, dass weltweit durch eine »grünere« Wirtschaft 15 bis 60 Millionen zusätzliche Jobs geschaffen werden können.225 Diese Bandbreite zeigt bereits, wie sehr das Wachstum von den tatsächlich realisierten Maßnahmen zur Förderung abhängt.
- Die OECD erwartet sich in den Ländern der OECD bis zum Jahr 2030 bis zu 20 Millionen neue Arbeitsplätze durch die Green Economy.226
- In der EU wird in den Branchen rund um Energieeffizienz und Erneuerbare Energien mit einem zusätzlichen Beschäftigungspotenzial bis 2020 von rund drei Millionen Arbeitsplätzen gerechnet. Alleine die Umsetzung des »Energiefahrplans 2020« soll in der EU 1,5 Millionen Arbeitsplätze bringen.227
- Der im Jahr 2010 formulierte »Masterplan Green Jobs« erwartet für Österreich bis zum Jahr 2020 einen Zuwachs von 100.000 Arbeitsplätzen. Hoffnungsträger ist hier insbesondere der Bereich Umwelttechnik. Die Realisierung der »Energiestrategie Österreich« alleine sollte laut Berechnungen des Institutes für Höhere Studien (IHS) einen Netto-Zuwachs von 50.000 Beschäftigten bringen.228

224 Vgl. OECD 2013, Seite 45.
225 Vgl. ILO 2012, Seite viii.
226 Vgl. OECD 2011, Seite 19.
228 Vgl. BMFLFUW 2010 und Balabanov / Friedl et al. 2010.
230 Vgl. OECD 2013, Seite 45f., und OECD / CEDEFOP 2014.
231 Vgl. UNEP 2012.
• Es entstehen neue, zusätzliche Arbeitsplätze (z.B. im Umweltschutz).
• Bestehende Arbeitsplätze werden durch andere ersetzt, es kommt zu einer Substitution (z.B. durch den Übergang von Energiegewinnung auf Basis fossiler Rohstoffe hin zu Erneuerbaren Energien).
• Bestehende Arbeitsplätze werden sich verändern, sie werden um zusätzliche »grüne« Qualifikationen erweitert bzw. ergänzt (z.B. in der Bauwirtschaft und in technisch orientierten Berufen).
• Teilweise werden Arbeitsplätze ersatzlos gestrichen (weil z.B. bestimmte Materialien oder Verfahren nicht mehr eingesetzt werden).

Gleichwohl bedeutet der Übergang zu einer Green Economy, dass insbesondere auf Beschäftigte in Sektoren, die auf fossiler Energie basieren und / oder die durch hohe Schadstoffbelastungen gekennzeichnet sind, erhebliche Veränderungen zukommen werden. Angesichts der Herausforderungen, die sowohl die Globalisierung in den letzten beiden Jahrzehnten als auch die anhaltende Wirtschaftskrise in den letzten Jahren für den Arbeitsmarkt bedeuteten und weiterhin bedeuten werden, handelt es sich dabei keineswegs um eine vernachlässigbare Größe.234

7.7 Green Economy – die europäische Perspektive

Der Rahmen für die europäische Energie- und Klimapolitik bis 2020, der sich auch in den EU-20-20-20 Zielen wiederfindet, zielt insbesondere auf die Reduzierung der Treibhausgasemissionen und auf die Sicherung der Energieversorgung ab, wobei gleichzeitig Wachstum,
Auf dem Weg in die Green Economy?

Grundsätzlich ist der Übergang zur Green Economy ein langfristiges Unterfangen, denn dieser Übergang erfordert erhebliche infrastrukturelle Investitionen mit langen Investitionszyklen. Dazu sind gesicherte Rahmenbedingungen erforderlich, die auf politischer Ebene geschaffen werden müssen. Bereits 2013 veröffentlichte die Europäische Kommission das Grünbuch für die Klima- und Energiepolitik der nächsten Dekade, und im Oktober 2014 hat sich der Europäische Rat auf den Rahmen für die Klima- und Energiepolitik bis 2030 verständigt. Beschluss wurden dabei folgende Ziele:

- Verringerung der Treibhausgasemission um 40 Prozent gegenüber 1990 (verbindlich);
- Mindestens 27 Prozent EU-Energie aus Erneuerbaren Energiequellen (auf EU-Ebene verbindlich);
- Steigerung der Energieeffizienz um 27 Prozent (Erhöhung auf 30 Prozent möglich, indikativ);
- 15 Prozent Verbundbildung bei den Stromnetzen (d.h. 15 Prozent der in einem Mitgliedstaat installierten Stromerzeugungskapazität müssen grenzüberschreitend für andere Mitgliedstaaten verfügbar sein).

Die anhaltende Wirtschaftskrise verändert auch die Rahmenbedingungen für die neuen Vorgaben, die Zielkonflikte zwischen Wettbewerbsfähigkeit, Energieversorgungssicherheit und Nachhaltigkeit treten stärker in den Vordergrund, insbesondere »braune« – also stark umweltbelastende – Industrien werden weiter unter Druck kommen. Eine wesentliche Rolle spielt dabei auch, dass die Kosten für Energie bis 2020 sowohl für die Haushalte als auch für die Wirtschaft steigen und erst dann wieder langsam sinken werden.

Auf dem Weg in die Green Economy?

Damit werden auch die Rahmenbedingungen für die Erneuerbaren Energien erheblich beeinflusst, die gleichzeitig als der Hoffnungsmarkt schlechthin gelten. Entwicklungen im Bereich der Erneuerbare Energien sind durch hohe Risiken gekennzeichnet, sie benötigen hohe Investitionen, die sich nur langfristig amortisieren. Abbildung 29 verdeutlicht, wie sich auf europäischer Ebene bis zum Jahr 2050 die Bedeutung der einzelnen Energieträger verändern könnte und dabei auch die große Rolle, die den Erneuerbaren Energien – insbesondere der Windenergie – beigemessen wird.

Abbildung 29: Energieerzeugung in der EU, nach Energieträger, 2000–2050, in TWh

Net electricity generation by fuel type (TWh)

Quelle: Europäische Kommission 2014c, Seite 44. TWh: Terrawattstunden

Der Bereich der Erneuerbaren Energien ist bereits aktuell ein beschäftigungsstarker Sektor mit geschätzten 1,2 Millionen direkt und indirekt Beschäftigten, die überwiegend in der Gewinnung von Windenergie, Solarenergie sowie im Bereich der Bioenergie tätig sind.247 Entsprechend seiner strategischen Bedeutung im künftigen Energiemix wird insbesondere der Windenergie erhebliches Beschäftigungspotenzial zugesprochen. Bis 2020 wird von einem jährlichen Beschäftigungsplus von 9,6 Prozent ausgegangen, was in Summe im Zeitraum 2012 bis 2020 zu einem Beschäftigungsplus von 145.000 Arbeitsplätzen führen soll (siehe Tabelle 12). Von der Solarthermie und dem Bereich der Niedrigenergie-Gebäude wird auf europäischer Ebene zwar ein dynamischeres Wachstum erwartet, allerdings ausgehend von einem deutlich niedrigeren Ausgangswert.

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2020</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>absolut</td>
</tr>
<tr>
<td>Windenergie</td>
<td>188.000</td>
<td>333.000</td>
<td>145.000</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>26.000</td>
<td>84.000</td>
<td>69.000</td>
</tr>
<tr>
<td>Energieeffiziente Gebäude</td>
<td>43.000</td>
<td>69.000</td>
<td>58.000</td>
</tr>
<tr>
<td>Energieeffizenter Straßengüterverkehr</td>
<td>107.000</td>
<td>118.000</td>
<td>10.000</td>
</tr>
</tbody>
</table>

Quelle: CEDEFOP 2013a, Seite 134

Dabei hängt das Wachstum der Umweltwirtschaft im Allgemeinen und des Sektors der Erneuerbaren Energien im Besonderen wesentlich vom Ausmaß der Investitionen ab. Schätzungen hinsichtlich der Beschäftigungsaussichten in diesem Sektor werden daher häufig an Annahmen zur Investitionstätigkeit gekoppelt. So wird davon ausgegangen, dass ein ambi-

246 Vgl. Europäische Kommission 2014c, Seite 44.

247 Vgl. EU Skills Panorama 2014.
tioniertes Investitionsprogramm in Erneuerbare Energien gegenüber einem »Business-as-Usual«-Szenario (BAU-Szenario) EU-weit für die Jahre 2011 bis 2030 zusätzliche 304.000 Jobs bringen würde. Dabei impliziert das BAU-Szenario alleine jährlich 750.000 Jobs, die besetzt werden müssen, allerdings inklusive Ersatzbedarf. Das ambitionierte »Dekarbonisierungsszenario« würde im Vergleich zum BAU-Szenario im Bereich der Energieerzeugung ein Beschäftigungsplus von 31.000 bedeuten, im Bereich der Energieeffizienz allerdings ein Plus von 273.000.248

7.8 Umweltbeschäftigte in Österreich – jüngste Entwicklungen

Der »Masterplan green jobs« des österreichischen Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLUFW) formulierte das ambitionierte Ziel, ausgehend vom Jahr 2010 die Zahl der Green Jobs von 185.000 bis zum Jahr 2020 um 100.000 zu erhöhen.249 Der Fokus des Masterplanes liegt auf den folgenden Bereichen:

- Land- und Forstwirtschaft;
- Umwelttechnik und Erneuerbare Energie sowie
- Tourismus und Freizeitwirtschaft.

Im Detail sollen die Jobs in folgenden Bereichen entstehen:

- 35.000 Jobs durch Investitionen in thermische Sanierung und Heizungsumstellungen;
- 20.000 Jobs durch Investitionen in das Energiesystem – Erneuerbare Energien;
- 15.000 Jobs durch Ausbau und Angebotsverbesserung des öffentlichen Personennah- und Regionalverkehrs;
- 13.500 Jobs durch Steigerung der Nachfrage nach ökologischen Angeboten im Tourismus;
- 6.500 Jobs durch Forcierung der Nutzung von forstlicher Biomasse;
- 6.000 Jobs durch Steigerung der Exportquote;
- 4.000 Jobs durch vermehrte Nachfrage nach Umwelt- und Forstwirtschaft.

248 Vgl. EU Skills Panorama 2014.
249 Vgl. BMLFUW 2010.
angewachsen, der Anteil des Umweltumsatzes am BIP von 10,6 Prozent auf 11,3 Prozent.\footnote{Statistik Austria 2015a.} Auf diese positive Entwicklung begründen sich einerseits die Erwartungen an die Umweltwirtschaft als stabiler und krisenfester Beschäftigungssektor, andererseits erscheinen aufgrund der bislang vorliegenden Zahlen die von der Politik formulierten Hoffnungen auf die Umweltwirtschaft als »Jobmotor« bzw. die Hoffnungen auf ein »Grünes Jobwunder« eher überzogen.

Abbildung 30: Umweltwirtschaft und Gesamtwirtschaft, Veränderung 2008–2013, in Prozent

Die EGSS wurde bereits mehrfach modifiziert, und die Daten werden aus einer Vielzahl an Quellen gespeist, die ihrerseits immer wieder Modifikationen unterworfen sind. Die Ergebnisse der EGSS müssen daher mit Vorsicht interpretiert werden, sie eignen sich jedoch für eine Beschreibung größerer Entwicklungslinien.

Eine solche Entwicklungslinie lässt sich in Tabelle 13 ablesen. Sie zeigt, dass die Umweltwirtschaft in den Jahren 2008 bis 2013 bereits erhebliche Restrukturierungsprozesse erlebte. So ist die Beschäftigung (in Vollzeitäquivalenten / VZÄ) in den Umweltdienstleistungen um 13,0 Prozent gewachsen. Dazu zählt eine große Bandbreite an Tätigkeitsbereichen, die von der Installation von Solaranlagen über Abfallsammlung bis hin zu spezialisierten Beratungsleistungen reicht. Gewachsen ist auch der Bereich der Umwelttechnologien, und zwar um 34,6 Prozent. Dabei gewinnen die so genannten »Integrierten« bzw. »Sauberen Technologien« zunehmend an Bedeutung, die bereits umweltschonende und / oder ressourceneffiziente Verfahren integriert haben (Solaranlagen, prozessinternes Wasserrecycling etc.). So genannte »End-of-Pipe«-Technologien, die nachsorgend oder reparierend wirken (Partikelfilter, Kläran-
In der Herstellung von Umweltgütern wird zwar für die Jahre 2008 bis 2013 nur ein bescheidenes Beschäftigungsplus von 0,6 Prozent ausgewiesen, allerdings war zuvor die Beschäftigung bis 2012 um 8,1 Prozent auf rund 65.100 gesunken. Umweltfreundliche Güter sind jene, die bei der Produktion, dem Verbrauch oder auch bei der Entsorgung weniger belastend für die Umwelt sind bzw. deutlich ressourceneffizienter hergestellt werden als vergleichbare herkömmliche Güter. Verbundene Güter dienen hingegen direkt und ausschließlich dem Umweltschutz bzw. dem Ressourcenmanagement.

Eine Bewertung entlang von Umweltbereichen zeigt die dominante Stellung des Managements der Energieressourcen: 2013 entfielen auf diesen Bereich 51,8 Prozent des Umweltumsatzes (18,8 Milliarden Euro) und 40,2 Prozent der Umweltbeschäftigten.
Auf dem Weg in die Green Economy?

Abbildung 31: Beschäftigte im Bereich »Management der Energieressourcen«, 2008 und 2013 im Vergleich

Quelle: Statistik Austria 2015a; eigene Darstellung

Rund 45 Prozent der Beschäftigungseffekte aus Technologien zur Nutzung Erneuerbarer Energien entfallen auf den Bereich der festen Biomasse, knapp 13 Prozent auf die Photovoltaik und jeweils rund zwölf Prozent auf die Windkraft und die Wasserkraft. Insbesondere für die Photovoltaik werden positive Entwicklungsperspektiven gesehen, während das Marktpotenzial für die Solarthermie, für die Wasserkraft und die feste Biomasse voraussichtlich abnehmen wird. Bereits die bisherige Entwicklung zeigte, dass Förderstrukturen das Marktpotenzial der einzelnen Technologien erheblich beeinflussen. So kam es beispielsweise durch attraktive energiepolitische Rahmenbedingungen ab dem Jahr 2003 zu einer massiven Steigerung der Nutzung der Windkraft, die 2007 bis 2010 durch den Wegfall öffentlicher Förderungen erheblich gebremst wurde. Erst durch neue Fördermöglichkeiten kam die Neuerrichtung von Windkraftanlagen ab 2011 wieder in Schwung.251

251 BMLFUW 2014, Seiten 30–37.
7.9 Beschäftigungsperspektiven in der Umweltwirtschaft

Durchgehend optimistisch bewertet werden die Beschäftigungsperspektiven für Hoch- schulabsolventInnen in der Umweltwirtschaft. Dies ist einerseits auf die bisherige positive

Entwicklung, insbesondere im Bereich der Umwelttechnik, zurückzuführen und andererseits auf deren Innovationsstärke und dem daraus resultierenden immanenten Bedarf an hochqualifizierten Beschäftigten. Darüber hinaus begünstigt die ausgeprägte Exportorientierung der Umwelttechnikindustrie die Beschäftigungschancen für HochschulabsolventInnen. Für Beschäftigte mit hohen Qualifikationen werden selbst im Falle eines verlangsamten Wachstums weiterhin Beschäftigungszuwächse erwartet, während zusätzliche Beschäftigungschancen für Geringqualifizierte von einem anhaltenden Wachstum abhängig sind. Da die Ökologisierung der Wirtschaft – im Gegensatz zur Globalisierung und Technologisierung – kein marktgetriebener Prozess ist, sondern in gewisser Weise einen gelenkten Strukturwandel darstellt, sind diese Wachstumschancen erheblich durch den politischen Willensbildungsprozess, durch Gesetze, Vorgaben und Richtlinien bestimmt.\(^\text{254}\)

7.10 Green Skills – New Skills?

Jüngste Studien des CEDEFOP gehen davon aus, dass die für einen Übergang zu einer ökologisch nachhaltigen Wirtschaft erforderlichen Kompetenzen weitgehend durch Weiterentwicklung der bei vielen Arbeitskräften bereits vorhandenen Kernkompetenzen aufgebaut werden können und dies im Wesentlichen mit einem überschaubaren Aufwand verbunden

\(^{256}\) Vgl. Descy / Pouliakas 2012, Seite 2.

Abbildung 32: Qualifikationsbedarfe für eine emissionsarme Wirtschaft

Aktuell deutet vieles darauf hin, dass beispielsweise die Umstellung im KFZ-Bereich auf Hybrid- und Elektrofahrzeuge keinen größeren Anpassungsbedarf und auch keine neuen Berufsbilder erforderlich macht sondern mit Anpassungsqualifizierungen bewältigbar ist. Der größte Bedarf im Bereich der Erneuerbaren Energien wird auch zukünftig auf die Ingenieursberufe und auf den Bausektor entfallen. Im Bereich der Windenergie gelten z.B. als geeignete Einstiege in die Wartung und Instandhaltung von Windenergieanlagen elektrotechnische, metalltechnische und mechatronische (Berufs-)Ausbildungen. Der Einsatz Erneuerbarer Energien geht mit dem Bedarf an neuen Versorgungsnetzen Hand in Hand. Der Aufbau von »Smart Grids«, also »intelligenten« Netzen, ist eng verknüpft mit neuen Skills im Bereich der IT.

257 Vgl. CEDEFOP 2012b.
259 Vgl. EU Skills Panorama 2014.
261 Vgl. EU Skills Panorama 2014.
263 Vgl. Valenta/Domingues et al. 2015.
Gerade im Bereich der Umweltwirtschaft und insbesondere in dem sehr technisch orientierten Bereich der Erneuerbaren Energien kommt den personalen, sozialen und kommunikativen Kompetenzen eine deutlich größere Bedeutung zu als in traditionellen Berufsfeldern, in denen elektrotechnisch, metalltechnisch oder mechatronisch ausgebildete Fachkräfte tätig sind. Dazu kommen zum Teil erhebliche Anforderungen an die körperliche Fitness. Hinsichtlich der Arbeitsorganisation und Soft Skills schätzen auch die ExpertInnen der AMS-Arbeitsgruppe »New Skills« folgende Aspekte als zentral ein:

- Schnittstellen- und Systemdenken, Fähigkeit zu Kooperation und zu vernetztem Denken;

Das CEDEFOP unterstrich jüngst wieder, dass ein hohes Beschäftigungsniveau und eine emissionsarme Wirtschaft Hand in Hand gehen können – allerdings unter der Voraussetzung, dass die nötigen Qualifikationen zur Verfügung stehen. Der Mangel an qualifizierten MINT-AbsolventInnen wird als ein wesentliches Hindernis für die Realisierung der Potenziale einer Green Economy eingeschätzt – dieser Mangel gibt mehr Anlass zur Besorgnis als der Mangel an spezialisierten, »grünen« Qualifikationen. Der Mangel an Hochqualifizierten aus den MINT-Fächern sei insbesondere im Hinblick auf die Realisierung großer Infrastrukturprojekte ein Problem.

Grundsätzlich wird dem Ausbildungsniveau große Bedeutung beigemessen. Länder mit Ausbildungssystemen, die ein hohes Niveau in den MINT-Studienfeldern aufweisen, haben bessere Chancen, im Bereich der Umweltinnovationen eine führende Rolle einzunehmen. Im Umwelttechnik-Atlas für Deutschland wird als Indikator für innovationsorientiertes Wachstum explizit die Anzahl der HochschulabsolventInnen in umwelttechnikrelevanten Fächern hervorgehoben, und die OECD hält dazu fest: »(…) the development and application of new green technologies will require a simultaneous development of a cadre of specialized and often highly skilled green researchers and production workers employed in firms specializing in eco-innovation and the production of advanced environmental goods and services.«

Einigkeit herrscht, dass die Umwelttechnologien – und hier insbesondere der Energiesektor – Beschäftigungspotenzial für hochqualifizierte Arbeitskräfte bieten und Engpässe in den Humanressourcen die Entwicklung behindern könnten. Allerdings kämpfen viele industria-

264 Vgl. CEDEFOP 2013b.
265 Vgl. CEDEFOP 2010, Seite 2.
266 Vgl. OECD 2012a, Seite 106 und Seite 11.
268 OECD 2012a, Seite 14.

7.11 Fazit

Der Übergang hin zu einer Green Economy, in der der Widerspruch zwischen Ökologie und Ökonomie aufgelöst ist und in der ökologisch nachhaltiges Wirtschaften mit sozialer Inklusion und positiven Wohlstandseffekten gekoppelt ist, hängt von einer Vielzahl an Einflussfaktoren ab, insbesondere:

- politische und regulative Rahmenbedingungen;
- Entwicklungen an den Rohstoffmärkten (z. B. Rohstoffpreise, Konkurrenz um knappe Ressourcen);
- Energie- und Umweltstrategien großer Volkswirtschaften, von Relevanz sind hier insbesondere auch die BRIC-Staaten (Brasilien, Russland, Indien und China);
- Globalisierungseffekte im Bereich der Umwelttechnik und Umweltleistungen.

274 Vgl. www.beruflexikon.at/beruf3266-ElektrotechnikerIn-mit-MODULEN.
275 Vgl. CEDEFOP 2013a und CEDEFOP 2013b.
Der Strukturwandel bedeutet, dass sich die Größenverhältnisse von Industriesektoren verschie-
ben werden, dass sich die Zusammensetzung der Industrien verändern wird und die Qualifi-
kationsbedarfe in den Wirtschaftszweigen.276 Das Angebot an einschlägig qualifizierten Fach-
kräften wird zwar einhellig als zentrales Element für einen gelingenden Strukturwandel hin zur
Green Economy eingeschätzt. Gleichzeitig muss hervorgehoben werden, dass Kompetenz- und
Qualifizierungsstrategien den Übergang zu einer ökologischen Wirtschaft zwar reibungsloser
gestalten können, der Erfolg des Strukturwandels aber letztlich von einem stabilen und stimm-
migen politischen Umfeld abhängt.277

\begin{flushright}
276 Vgl. CEDEFOP 2013a Seite 27.
\end{flushright}
8 Feminisierung – der »Female Shift« als Trendwende?

8.1 Einleitung

Stark aufgeholt haben Frauen außerdem hinsichtlich des Ausbildungsniveaus und der Erwerbsbeteiligung. Allerdings greift die Reduzierung des so genannten »Female Shift« auf das Ausmaß der Beteiligung am Arbeitsmarkt zu kurz, denn die Gleichstellung der Geschlechter wird als eine Frage von Fairness und Gerechtigkeit begriffen, die von zahlreichen politischen, sozialen und kulturellen Dimensionen begleitet ist und damit entscheidenden Einfluss auf subjektives Wohlbefinden und Zufriedenheit hat. Grundsätzlich stellt Feminisierung als Trend – oder wie auch immer wieder bezeichnet: der »Female Shift« – eine Querschnittstheme-
Feminisierung – der »Female Shift« als Trendwende?

Das in Frankfurt am Main und Wien ansässige Zukunftsinstitut\(^{284}\) beispielsweise versteht unter dem »Female Shift« die Auflösung der tradierten Geschlechterrollen und ein Lebensmodell, in dem Frauen und Männer ihre Lebensbalance nicht nur in der beruflichen Verwirklichung suchen, sondern auch in neuen Beziehungs- und Familienmodellen.\(^{285}\) Studien zeigen, dass Frauen heute selbstbewusster und stärker auf Erwerbsarbeit ausgerichtet sind, und sie zeigen auch, dass insbesondere junge Männer ihr Rollenverständnis ändern und immer mehr eine Partnerin wollen, die auf eigenen finanziellen Beinen steht.\(^{286}\)

8.2 Steigende Erwerbsbeteiligung

\(^{284}\) www.zukunftsinstitut.de.
\(^{286}\) Vgl. Allmendinger / Haarbrücker 2013.
\(^{287}\) Für Deutschland siehe dazu z.B. Robert Bosch Stiftung 2013.
\(^{288}\) Zur internationalen Dimension siehe OECD 2012c.
\(^{289}\) Vgl. ILO 2013a, Seite 21 f.
\(^{290}\) Vgl. Eurostat, Erwerbstätigenquote nach Geschlecht in der Altersgruppe »20–64 Jahre«.
Für den Zeitraum 2013 bis 2025 geht die Erwerbsprognose der Statistik Austria von einem Gesamtplus von über 75.000 Erwerbspersonen aus (Steigerung von 4,14 auf 4,21 Millionen). Davon werden nur knapp 10.000 Männer sein, mehr als 65.000 jedoch Frauen (siehe Abbildung 34). Damit steigt voraussichtlich die Zahl der männlichen Erwerbspersonen um 0,4 Prozent, jene der weiblichen Erwerbspersonen bis 2025 jedoch um 3,5 Prozent. Im Jahr 2025 werden damit in Österreich wohl 45,5 Prozent aller Erwerbspersonen weiblich sein (2013: 44,8 Prozent).

Abbildung 35: Voll- und Teilzeitbeschäftigung von Frauen, 1994–2014

![Graphik der Vollzeit- und Teilzeitbeschäftigung von Frauen von 1994 bis 2014](image)

Quelle: Statistik Austria, Mikrozensus. * Zeitreihenbruch aufgrund Stichprobenumstellung 2004

8.3 Atypische Beschäftigung und die Vereinbarkeit von Beruf und Familie

Die »Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2013 bis 2020«,292 ebenfalls im Auftrag des AMS Österreich erstellt, geht davon aus, dass für den Zeitraum 2013 bis 2020 der Teilzeitanteil an der Gesamtbeschäftigtenz von 22,8 auf 25,1 Prozent steigen wird, also um 2,4 Prozentpunkte. Während bei den Männern der Teilzeitanteil voraussichtlich um 1,2 Prozentpunkte wächst, wird für die Frauen ein Plus von drei Prozentpunkten erwartet.

Teilzeitbeschäftigung prägt insbesondere die Erwerbsbeteiligung von Frauen mit betreuungspflichtigen Kindern. 2014 waren 74,3 Prozent der Frauen im Alter von 25 bis 49 Jahren mit Kindern unter 15 Jahren teilzeitbeschäftigt, zehn Jahre zuvor lag dieser Wert bei 60,0 Prozent. Im gleichen Zeitraum ist die Teilzeitquote der Männer mit Kindern unter 15 Jahren von 2,8 auf 6,1 Prozent gestiegen (siehe Abbildung 36). Zwar nehmen in Österreich inzwischen mehr Väter die Möglichkeit der Elternkarenz wahr, allerdings ist die Entwicklung nicht berauschend: 2011 waren 8,4 Prozent aller Kinderkarenzbetreuenden Väter, sie nahmen aber nur 4,2 Prozent der gesamten Kinderbetreuungstage in Anspruch. Anders als bei den Frauen bedeutet die Karenz für Männer keinen Karriereknick.296 Der »Gleichstellungsindex Arbeitsmarkt«, ebenfalls im Auftrag des AMS Österreich erstellt, der die Schnittstellen zwischen Arbeitsmarkt, Bildung und Familie erfasst, zeigt deutlich, dass Frauen im Vergleich zu Männern insbesondere im Themenfeld »Familie«, das die Vereinbarkeit von Familie und Beruf abbildet, schlecht abschneiden. Im Gesamtindex erreichten Frauen im

292 Vgl. WIFO/AMS 2014.
293 Vgl. ILO 2015.
294 Vgl. Biffi 2010, Seite 470f.
295 Vgl. Eppel / Horvath / Mahringer 2012.
296 Vgl. Reidl / Schifffbänker 2013.
Jahr 2013 durchschnittlich 71 Prozent der Männerwerte, im Themenbereich »Familie« jedoch nur 40 Prozent.\footnote{297}

8.4 Gender Pay Gap

Während sowohl die Bildungsbeteiligung als auch die Erwerbsbeteiligung der Frauen bereits in den letzten Jahrzehnten deutliche Zuwächse zu verzeichnen hatten, zeigen sich hinsichtlich der geschlechtsspezifischen Lohnunterschiede nur sehr moderate Veränderungen.

\footnote{297} Vgl. Bock-Schappelwein/Famira-Mühlberger/Horvath et al. 2015.
\footnote{298} EU-28: 16,4 Prozent im Jahr 2013.

8.5 Berufliche und sektoriale Segregation

Nach wie vor ist in Österreich eine ausgeprägte berufliche Segregation zu diagnostizieren. Diese wird strukturell bereits im Bildungssystem vorbereitet, das gilt sowohl für den berufsbildenden sekundären Bereich als auch für den Tertiärbereich – ist also tief verwurzelt.

Wie Abbildung 37 deutlich zeigt, wird es die stärksten Beschäftigungszuwächse für Frauen in den akademischen Berufen geben, hier zeigt sich auch ein sehr ausgeglichenes Verhältnis zwischen Männern und Frauen. Geradezu konträr dazu die erwartete Entwicklung bei den technischen Berufen und den nicht-akademischen Fachkräften, in letzterer Gruppe stellen die Gesundheitsfachkräfte den entscheidenden Wachstumstreiber dar.305 Die Dominanz

304 Vgl. WIFO/AMS 2014.
305 Dazu zählen beispielsweise Krankenpflegefachkräfte, Berufe im Bereich der medizinischen und pharmazeutischen Assistenz, Physiotherapie.
der Männer in den technischen Berufen setzt sich genauso fort wie die Dominanz der Frauen bei den nicht-akademischen Fachkräften. Deutlich zeichnet sich auch ab, dass geringqualifizierte Männer am Arbeitsmarkt noch stärker unter Druck kommen werden, sie sind am stärksten vom Abbau der Arbeitsplätze mit geringen Qualifikationsanforderungen in der Sachgüterproduktion betroffen. Für geringqualifizierte Frauen hingegen eröffnen sich – wenn auch in geringem Ausmaß – Chancen für Hilfstätigkeiten im Dienstleistungs bereich.

Diese Segmentierung des Arbeitsmarktes wird unter dem Aspekt der Wahrung der Wettbewerbsfähigkeit kritisch bewertet. Würden mehr Frauen statt in die traditionellen Lehrberufe in moderne, nachgefragte Lehrberufe einsteigen und mehr AHS-Absolventinnen in Richtung naturwissenschaftlich-technischer Studien gehen, dann könnte der potenzielle Beitrag von Qualifikationen zu Wachstum und Wettbewerbsfähigkeit höher sein.\(^{306}\) So liegt der Anteil der Frauen an den LehrabsolventInnen in Sekretariats- und Büroberufen nach wie vor bei 82 Prozent, im Friseurgewerbe und der Schönheitspflege bei 95 Prozent, im Handel bei 68 Prozent und im Gastgewerbe/Catering bei 55 Prozent. Damit schließen fast drei Viertel aller Mädchen eine Lehre in einem der genannten vier Ausbildungsfelder ab. Während an den Höheren Technischen und Gewerblichen Lehranstalten (HTL) der Frauenanteil bei 29 Prozent liegt, sind 92 Prozent der SchülerInnen an Wirtschaftsberuflichen Höheren Schulen weiblich.\(^{307}\)

8.6 Bildungsbeteiligung der Frauen

2012/2013 wurden 58,3 Prozent der Maturaabschlüsse von Frauen abgelegt, und 58,7 Prozent der Studienabschlüsse an Universitäten wurden von Frauen erworben.\(^{309}\) Im Wintersemester 2014/2015 waren 54,2 Prozent der Studierenden an österreichischen Hochschulen Frauen.\(^{310}\) Die aktuelle Hochschulprognose geht davon aus, dass der Frauenanteil an

\(^{308}\) Vgl. Statistik Austria 2015b.
\(^{310}\) Vgl. Statistik Austria, Hochschulstatistik.

doch unterproportional. Der Anteil der Frauen in der durch digitale Technologien geprägten Startup-Szene liegt in Österreich bei zwölf Prozent.

Abbildung 38: Mediandauer bis zur ersten Erwerbstätigkeit in Monaten nach Master- bzw. Diplomabschluss an einer Universität oder Fachhochschule, nach Geschlecht und Ausbildungsfeldern

Quelle: Wanek-Zajic / Klapfer / Gatterbauer et al. 2015, Seite 29

8.7 Soft Skills als weibliche Domäne

Große Einigkeit herrscht über die Bedeutung von Soft Skills für die individuelle Employability und für den beruflichen Erfolg – dies umso mehr in einer sich ständig wandelnden Arbeitswelt. Erst durch die überfachlichen (»weichen«) Kompetenzen kommen die fachlichen (»harten«) Kompetenzen voll zum Tragen, so der Tenor.\(^{318}\)

So nehmen typischerweise in der von Männern dominierten Sachgüterproduktion berufs spezifische Kompetenzen eine wichtige Rolle ein, während Soft Skills für den für die Frauenbeschäftigung wichtigen Dienstleistungssektor von hoher Relevanz sind.\(^{321}\) Gerade durch den – überwiegend von Männern gestalteten – technischen Fortschritt wird den sozialen Skills eine weiter zunehmende Bedeutung beigemessen, denn Tätigkeiten, die ein geringes Ausmaß an sozialen Skills verlangen, sind mit großer Wahrscheinlichkeit Routinetätigkeiten, die ein hohes Potenzial für Automatisierung implizieren.\(^{322}\)

320 Reichenbach 2014, Seite 40 f.
8.8 Fazit

Unbestritten und durch eine Vielzahl an Daten belegt ist, dass Frauen bereits über die letzten Jahrzehnte ihre Beteiligung am Erwerbsleben wie auch am Bildungssystem massiv erhöht haben. Das gilt jedenfalls für Österreich, für die meisten Länder der EU und darüber hinaus. Doch damit ist der große Bogen im Wesentlichen bereits beschrieben, denn ein genauerer Blick auf die Arbeitsmarktdaten zeigt, dass zumindest auf der Ebene der Erwerbstätigkeit wenige Signale zu erkennen sind, die tiefgreifende strukturelle Veränderungen ankündigen. Neben der beruflichen Segregation und der Konzentration auf atypische Beschäftigungsformen ist beispielsweise der nach wie vor geringe Anteil von Männern, die Elternkarenz in Anspruch nehmen, als ein Indikator für die Persistenz traditioneller Strukturen anzuführen. Zumindest bezogen auf den Arbeitsmarkt kann der »Female Shift« weniger als Trendwende, sondern vielmehr als »more of the same« zusammengefasst werden.
9 Literatur

131
Literatur

Abbildungsverzeichnis

Abbildung 1: Treibende und blockierende Kräfte am Beispiel der Globalisierung 12
Abbildung 2: Megatrends .. 15
Abbildung 10: Entwicklung des Arbeitskräfteangebotes in der EU, nach Qualifikationsniveaus, 2000–2025 ... 32
Abbildung 11: Beschäftigungsmöglichkeiten, nach Qualifikationsniveaus sowie Expansions- und Ersatzbedarf in Österreich, 2013–2025 (Prognose CEDEFOP) 34
Abbildung 12: Beschäftigte, nach Berufshauptgruppen, 2013 und 2020 (Prognose Österreich) ... 36
Abbildung 13: Bevölkerungsentwicklung in Österreich, nach Altersgruppen, 1952–2060 . 40
Abbildung 14: Bevölkerungsstruktur, nach Altersgruppen, 2020–2050, Hauptszenario und Hauptvariante ohne Wanderung im Vergleich ... 42
Abbildung 15: Entwicklung der Gesamtbevölkerung, nach Bundesländern 43
Abbildung 16: Veränderung der Altersgruppe »75 Jahre und älter«, 2015–2025 und 2025–2035, nach Bundesländern ... 44
Abbildung 17: EU-27-Bevölkerung, nach Geschlecht, Alter und Erwerbstätigkeit, 2010 und 2030 (in Millionen) ... 45

137
Abbildung 20: Anteile der Altersgruppen an der Erwerbsbevölkerung, 2013 und 2025 . 51
Abbildung 21: Wachstumskurve vernetzter Geräte . 58
Abbildung 23: Die drei Enabler: Digitalisierung, Mobiles Internet und Cloud Computing . 61
Abbildung 26: Veränderung der Zahl der Unternehmen und der Beschäftigten, 2008–2013, IKT-Sektor und Gesamtwirtschaft . 69
Abbildung 27: Erwerbstätige in IKT-Berufen, 2005–2014 (Mikrozensus-Arbeitskräfteerhebung) . 71
Abbildung 29: Energieerzeugung in der EU, nach Energieträgern, 2000–2050, in TWh . 98
Abbildung 31: Beschäftigte im Bereich »Management der Energieressourcen«, 2008 und 2013 im Vergleich . 103
Abbildung 32: Qualifikationsbedarfe für eine emissionsarme Wirtschaft . 106
Abbildung 33: Entwicklung der Erwerbstätigenquoten der Frauen, nach Altersgruppen, 1994–2014 . 113
Abbildung 34: Erwerbspersonen, nach Geschlecht, prognostizierte Veränderung für 2013–2025 . 113
Abbildung 38: Mediandauer bis zur ersten Erwerbstätigkeit in Monaten nach Master- bzw. Diplomabschluss an einer Universität oder Fachhochschule, nach Geschlecht und Ausbildungsfeldern . 121
Tabellenverzeichnis

Tabelle 1: Trend-Phänomene ... 13
Tabelle 2: Erwerbstätige, nach höchster abgeschlossener Schulbildung, 2004 und 2014 31
Tabelle 4: Unselbständige Beschäftigung, nach dem Niveau der Ausbildungsanforderungen (Skill Levels), 2013 und 2020 ... 35
Tabelle 5: Anteile der Altersgruppen an der Gesamtbevölkerung, 1990–2050 ... 41
Tabelle 6: Anteil der Bevölkerung im erwerbsfähigen Alter an der Gesamtbevölkerung, 2000–2030 .. 46
Tabelle 7: Erwerbspersonen in Österreich – Entwicklung, 1994–2013 .. 47
Tabelle 8: Prognose der Erwerbsbevölkerung bis 2030, nach Bundesländern .. 48
Tabelle 9: Erwerbsbevölkerung, nach Altersgruppen, 2013 und 2025 .. 50
Tabelle 10: Beschäftigte im IKT-Sektor, nach Wirtschaftsabteilungen (ÖNACE 2008), 2008–2013 ... 70
Tabelle 13: Umweltbeschäftigte in Österreich, 2008 und 2013 im Vergleich (Veränderung) ... 102
... sind die Internet-Adressen für Berufsinformationen

Unter den oben genannten Internet-Adressen stehen Ihnen aktuelle Berufsinformationen per Knopfdruck zur Verfügung. Hier finden Sie unter anderem:

• Informationen über die BerufsInfoZentren des AMS und deren Angebot.
• Eine Auflistung aller BerufsInfoBroschüren des AMS sowie Hinweise, welche Broschüren Sie downloaden können.
• Programme, die Sie bei Ihrer Berufs- und Bildungsentscheidung unterstützen.
• Datenbanken, mit denen Sie die Berufs- und Bildungswelt per Mausklick erobern.

EIN BESUCH IM NETZ LOHNT SICH ALLEMAL!!!

Beispiele der Online-Infos des AMS

Benötigen Sie eine Orientierungshilfe für Ihre Berufswahl, ist der Berufskompass die richtige Adresse.

Das AMS-Qualifikationsbarometer zeigt Ihnen, in welchen Berufsbereichen Arbeitskräfte nachgefragt werden und mit welchen Qualifikationen Sie punkten.

Im AMS-Berufsinformationssystem erfahren Sie, welche Qualifikationen in Ihrem Beruf derzeit gefragt sind, mit welchen Arbeitsbelastungen Sie rechnen müssen und welche Berufsalternativen Ihnen offenstehen.

Im AMS-Berufslexikon online können Sie detaillierte Beschreibungen einer Vielzahl von Einzelberufen aus allen Bildungsebenen aufrufen.

Die AMS-Weiterbildungsdatenbank bietet einen Überblick über Weiterbildungsmöglichkeiten, Ausbildungsträger und Kurse in ganz Österreich.
Aktuelle Publikationen der Reihe AMS report

Download unter www.ams-forschungsnetzwerk.at im Menüpunkt »E-Library«

AMS report 112

Regina Haberfellner

Zur Digitalisierung der Arbeitswelt
Globale Trends – europäische und österreichische Entwicklungen

ISBN 978-3-85495-588-X

AMS report 113

Sabine Putz, Hilde Stockhammer, René Sturm (Hg.)

Geschlecht, Berufswahl und Arbeitsmarkt
Eine aktuelle Projektschau der Abt. Arbeitsmarktforschung und Berufsinformation und der Abt. Arbeitsmarktpolitik für Frauen des AMS Österreich

ISBN 978-3-85495-589-8
Aktuelle Publikationen der Reihe AMS report

AMS report 114

Uwe Elsholz

From Teaching to Learning:
Zu den Gestaltungsoptionen
betrieblichen Lernens

ISBN 978-3-85495-590-1

AMS report 115

Winfried Moser, Korinna Lindinger, Caterina Hannes

Früher Schulabgang in Österreich:
Zur Rolle der Ausbildungsstruktur
und des Migrationshintergrundes

ISBN 978-3-85495-591-X
Aktuelle Publikationen der Reihe AMS report

Download unter www.ams-forschungsnetzwerk.at im Menüpunkt »E-Library«

AMS report 117

Andrea Dorr, Christina Enichlmair, Eva Heckl, Petra Ziegler

IKT-Kompetenzen im Fokus der aktiven Arbeitsmarktpolitik
Initiativen und Good Practices für Niedrig- und Mittelqualifizierte vor dem Hintergrund von PIAAC: Österreich im internationalen Vergleich

ISBN 978-3-85495-593-6

AMS report 116

Sandra Schneeweiß

Wenn die Norm ein Geschlecht hat
Zur Arbeitssituation von Frauen in technischen Berufen in Österreich

ISBN 978-3-85495-592-8
Aktuelle Publikationen der Reihe AMS report

Download unter www.ams-forschungsnetzwerk.at im Menüpunkt »E-Library«

AMS report 118

Andrea Egger-Subotitsch, Claudia Liebeswar, Larissa Bartok (abif), Andreas Riesenfelder (L&R) & Monika Rauscher (move-ment)

Validität der Feststellung des Beschäftigungspotenzials anhand von AMS- und HV-Verbleibsdaten

ISBN 978-3-85495-594-4

AMS report 119

Monira Kerler, Martin Stark

Beratung mit Wirkung

Die Effekte der Berufsberatung von Berufslfossenzentren (BIZ) des AMS am Beispiel von Burgenland und Tirol

ISBN 978-3-85495-595-2
Steigende Arbeitslosenzahlen, ein tiefgreifender struktureller Wandel und eine zähe Wirtschaftsentwicklung infolge der globalen Finanz- und Wirtschaftskrise werfen (besorgte) Fragen dahingehend auf, in welche Richtung sich in den nächsten Jahren Wirtschaft und Beschäftigung fortkontinuieren werden und welche Trends sich abzeichnen. Welche Entwicklungsperspektiven gibt es für die Beschäftigung und damit auch hinsichtlich zukünftiger Tätigkeitsprofile und Qualifikationsanforderungen?

www.ams-forschungsnetzwerk.at
... ist die Internet-Adresse des AMS Österreich für die Arbeitsmarkt-, Berufs- und Qualifikationsforschung